Ta có :
\(A=3\left(x^2+y^2\right)-\left(x^3+y^3\right)+1\)
\(=3\left(x^2+y^2+2xy-2xy\right)-\left(x+y\right)\left(x^2+y^2-xy\right)+1\)
\(=3\left[\left(x+y\right)^2-2xy\right]-2\left[\left(x^2+y^2+2xy\right)-3xy\right]+1\)
\(=3\left(2^2-2xy\right)-2\left[\left(x+y\right)^2-3xy\right]+1\)
\(=12-6xy-2.\left(4-3xy\right)+1\)
\(=12-6xy-8+6xy+1\)
\(=5\)
Vậy ...