\(\frac{1}{2}S=\left(\frac{1}{2}\right)^2+\left(\frac{1}{2}\right)^3+...+\left(\frac{1}{2}\right)^{21}\)
\(\Rightarrow\left(\frac{1}{2}S\right)-S=\left(\left(\frac{1}{2}\right)^2+\left(\frac{1}{2}\right)^3+...+\left(\frac{1}{2}\right)^{21}\right)-\left(\left(\frac{1}{2}\right)+\left(\frac{1}{2}\right)^2+...+\left(\frac{1}{2}\right)^{20}\right)\)
\(\Rightarrow-\frac{1}{2}S=\left(\frac{1}{2}\right)^{21}-\left(\frac{1}{2}\right)\)
\(\Rightarrow S=\frac{\left(\left(\frac{1}{2}\right)^{21}-\frac{1}{2}\right)}{-\frac{1}{2}}\)