Gỉa sử x, y, z là các số thực khác 0 thỏa mãn : \(x\left(\frac{1}{y}+\frac{1}{z}\right)+y\left(\frac{1}{z}+\frac{1}{x}\right)+z\left(\frac{1}{x}+\frac{1}{y}\right)=-2\) và \(x^3+y^3+z^3=1\)
Tính P = \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)
Gỉa sử x, y, z là các số thực khác 0 thỏa mãn : \(x^3+y^3+z^3=1\) và \(x.\left(\frac{1}{y}+\frac{1}{z}\right)+y.\left(\frac{1}{z}+\frac{1}{x}\right)+z.\left(\frac{1}{x}+\frac{1}{y}\right)=\left(-2\right)\)
Tính P = \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)
cho x;y;z là các số thực khác 0 thỏa mãn \(x\left(\frac{1}{y}+\frac{1}{z}\right)+y\left(\frac{1}{x}+\frac{1}{z}\right)+z\left(\frac{1}{x}+\frac{1}{y}\right)=-2\)Tính giá trị của biểu thức P=\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)
Cho x, y, z là các số thực dương thõa mãn xy + yz + zx = 1
a) Chứng minh rằng: \(1+x^2=\left(x+y\right)\left(x+z\right)\)
b) Tính giá trị biểu thức P = \(x\sqrt{\frac{\left(1+y^2\right)\left(1+z^2\right)}{1+x^2}}+y\sqrt{\frac{\left(1+z^2\right)\left(1+x^2\right)}{1+y^2}}+z\sqrt{\frac{\left(1+x^2\right)\left(1+y^2\right)}{1+z^2}}\)
giả sử x,y,z là các số thực khác 0 thỏa mãn hệ thức
\(x\left(\frac{1}{y}+\frac{1}{x}\right)+y\left(\frac{1}{z}+\frac{1}{x}\right)+z\left(\frac{1}{x}+\frac{1}{y}\right)=-2\)Và
\(x^3+y^3+z^3=1\)
Tính: \(A=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)
Cho các số thực dương x,y,z thỏa mãn xyz=1 . Tìm giá trị nhỏ hất của biểu thức \(E=\frac{1}{x^3\left(y+z\right)}+\frac{1}{y^3\left(z+x\right)}+\frac{1}{z^3\left(x+y\right)}\)
Cho 3 số x,y,z khác 0 đồng thời thỏa mãn \(x+y+z=\frac{1}{2},\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+\frac{1}{xyz}=4\) và \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}>0\)
Tính giá trị biểu thức Q=\(\left(y^{2017}+z^{2017}\right)\left(z^{2019}+x^{2019}\right)\left(x^{2021}+y^{2021}\right)\)
1/Cho a,b,c thỏa mãn \(\frac{2}{\left(x^2+1\right)\left(x-1\right)}=\frac{ax+b}{x^2+1}+\frac{c}{x-1}\)
Tính giá trị biểu thức M=\(\frac{a^{2017}+b^{2018}+c^{2019}}{a^{2017}b^{2018}c^{2019}}\)
2/Cho x,y,z≠0 và x+y+z=2008
Tính giá trị biểu thức P=\(\frac{x^3}{\left(x-y\right)\left(x-z\right)}+\frac{y^3}{\left(y-x\right)\left(y-z\right)}+\frac{z^3}{\left(z-y\right)\left(z-x\right)}\)
Cho các số thực x, y, z thõa mãn xyz = 1. Chứng minh rằng:
\(\frac{1}{\left(2+x\right)\left(2+\frac{1}{y}\right)}+\frac{1}{\left(2+y\right)\left(2+\frac{1}{z}\right)}+\frac{1}{\left(2+z\right)\left(2+\frac{1}{x}\right)}\le\frac{1}{3}\)