Tham khảo câu hỏi : Câu hỏi của Thiên Thiên - Toán lớp 7 | Học trực tuyến
Tham khảo câu hỏi : Câu hỏi của Thiên Thiên - Toán lớp 7 | Học trực tuyến
Giả sử x = a/m ; y = b/m (a, b, m thuộc Z, m < 0) và x > y. Hãy chứng tỏ rằng nếu chọn z = (a + b) / 2m thì ta có x < z < y.
Sử dụng tính chất: Nếu a, b, c thuộc Z và a < b thì a + c < b + c
Giả sử X = a/m , Y=b/m (a,b,m thuộc Z) và x<y. Hãy chứng tỏ rằng nếu chọn z = a+b/2m thì ta có x<z<y
HD: Sử dụng tính chất: Nếu a,b,c thuộc Z và a<b thì a+c<b+c
giả sử x=a/m,y=h/m (a,b,m thuộc Z , m>0) và x<y.hãy chứng tỏ rằng nếu chọn z=a+b/2m thì ta có x<z<y .
Hướng dẫn . sử dụng tinh chất : nếu a,b ,c thuộc z và a<b thì a+c<b+c
Gỉa sử x = a/m, y = b/m (a,b,m thuộc Z, m > 0) và x < y. Hãy chứng tỏ rằng nếu chọn z = a + b/2m thì ta có x < z < y.
Hướng dẫn : Sử dụng tính chất : Nếu a,b,c thuộc Z và a < b thì a + c < b + c
Giả sử x=a/m, y=b/m (a,b,m€Z,m>0) và x<y. Hãy chứng tỏ rằng nếu chọn z=a+b/2m thì ta có x<z<y.
Hướng dẫn sử dụng tính chất nếu a,b,c €Z và a<b thì a+c<b+c.
1. So sánh số hữu tỉ a/b (a,b thuộc Z , b khác 0) với số 0 khi a,b cùng dấu và khi a,b khác dấu.
2. Giả sử x=a/m , y=b/m (a,b,m thuộc Z, m >0)và x<y. Hãy chứng to rằng nếu chọn z=a+b:2m thì ta cóx<z<y
Hướng dẫn : Sử dụng tính chất : Nếu a,b,c thuộc Z và a<b thì a+c<b+c
Giả sử x=\(\frac{a}{m}\);y=\(\frac{b}{m}\)(a,b,m Thuộc Z, m khác 0) và x<y. Hãy chứng tỏ rằng nếu chọn z =\(\frac{a+b}{2m}\)thì ta có x<z<y.
Hướng dẫn : Sử dụng tính chất : Nếu a,b,c Thuộc Z và a<b thì a+c<b+c.
Giải giúp với
Giả sử x= a ( phần ) b, y = b ( phần ) m ( a,b,m thuộc Z , m > 0) và x< y. Hãy chứng tỏ rằng nếu chọn z = a+b ( phần ) 2m thì ta có x < z < y.
Hướng dẫn : Sử dụng tính chất : Nếu a,b,c thuộc Z và a<b thì a + c < b+ c
Làm ơn giúp mình nha, mình cần gấp gấp gấp gấp lắm, đúng mình xin đa tạ
giả sử x = a/m , y= b/m ( a,b,c thuộc Z, m > 0 ) và x < y. Hãy chứng tỏ rằng nếu chọn z = a+b/2m thì ta có x<z<y