Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Lê Anh

Giả sử có 2015 số nguyên dương a1,a2,a3,...,a2015 thỏa mãn:\(\frac{1}{a_1}+\frac{1}{a_2}+\frac{1}{a_3}+...+\frac{1}{a_{2015}}=1008\).CMR có ít nhất 2 trong 2015 số nguyên dương đã cho = nhau 

 

Tran Le Khanh Linh
5 tháng 4 2020 lúc 11:08

Giả sử trong 2015 số đã cho không có 2 số nào bằng nhau

Không mất tính tổng quát giải sử \(a_1< a_2< a_3< ......< a_{2015}\)

Vì \(a_1;a_2;a_3;....a_{2015}\)đều là các số nguyên dương nên \(a_1\ge1;a_2\ge2;....;a_{2016}\ge2016\)

\(\Rightarrow\frac{1}{a_1}+\frac{1}{a_2}+\frac{1}{a_3}+....+\frac{1}{a_{2015}}< 1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2015}\)\(=1+\left(\frac{1}{2}+\frac{1}{3}\right)+\left(\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+\frac{1}{7}\right)+....+\left(\frac{1}{1024}+\frac{1}{1025}+\frac{1}{1026}+...+\frac{1}{2015}\right)\)

\(< 1+\frac{1}{2}\cdot2+\frac{1}{4}\cdot4+\frac{1}{8}\cdot8+....+\frac{1}{512}\cdot512+\frac{1}{1024}\cdot993\)

\(< 1+\frac{1}{2}\cdot2+\frac{1}{2^2}\cdot2^2+\frac{1}{2^3}\cdot2^3+......+\frac{1}{2^{10}}\cdot2^{10}=11< 1008\)

Trái với giải thiết. Do đó điều giả sử sai

Vậy trong 2015 số đã cho có ít nhất 2 số bằng nhau

Khách vãng lai đã xóa

Các câu hỏi tương tự
Nguyễn Thị Thu Hằng
Xem chi tiết
Nguyễn Đức Cảnh
Xem chi tiết
Cao Thành Long
Xem chi tiết
Trà Chanh ™
Xem chi tiết
Nguyễn Minh Ngọc
Xem chi tiết
Độc Tiêu Sầu
Xem chi tiết
Yuki
Xem chi tiết
Minh Nguyễn Cao
Xem chi tiết
Le Phuc Thuan
Xem chi tiết