Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Việt Hà

Giả sử a,b,c là các số dương , cmr :\(\sqrt{\frac{a}{b+c}}+\sqrt{\frac{b}{c+a}}+\sqrt{\frac{c}{a+b}}>2\)

Trương Thanh Long
13 tháng 10 2019 lúc 22:49

Theo BĐT Cauchy : 

\(\sqrt{\frac{b+c}{a}.1}\le\frac{\frac{b+c}{a}+1}{2}=\frac{a+b+c}{2a}\)

Do đó : \(\sqrt{\frac{a}{b+c}}\ge\frac{2a}{a+b+c}\)

Tương tự : \(\sqrt{\frac{b}{c+a}}\ge\frac{2b}{a+b+c}\)

              \(\sqrt{\frac{c}{a+b}}\ge\frac{2c}{a+b+c}\)

\(\Rightarrow\sqrt{\frac{a}{b+c}}+\sqrt{\frac{b}{c+a}}+\sqrt{\frac{c}{a+b}}\ge\frac{2\left(a+b+c\right)}{a+b+c}=2\)

Dấu "=" xảy ra khi và chỉ khi :

\(\hept{\begin{cases}a=b+c\\b=c+a\\c=a+b\end{cases}\Rightarrow a+b+c=0}\), vô lí vì a, b, c là các số dương nên đẳng thức không xảy ra.

Vậy \(\sqrt{\frac{a}{b+c}}+\sqrt{\frac{b}{c+a}}+\sqrt{\frac{c}{a+b}}>2\).

Trương Thanh Long
13 tháng 10 2019 lúc 22:57

Chết cha, mình bị thiếu chỗ dấu "=" xảy ra là c = a + b.


Các câu hỏi tương tự
Park Chanyeol
Xem chi tiết
Hắc Thiên
Xem chi tiết
fan FA
Xem chi tiết
Nguyễn Mai
Xem chi tiết
Trần Huỳnh Thanh Long
Xem chi tiết
Ngô Huy Hoàng
Xem chi tiết
Phan Ngô Ngọc Bích
Xem chi tiết
Anime Tổng Hợp
Xem chi tiết
luu thanh huyen
Xem chi tiết