Giả sử a,b thuộc Q,a,b>0 và a,b không là bình phương của 1 số hữu tỉ nào.
CMR: Nếu r và s là 2 số hữu tỉ sao cho t= rcăna + scănb là một số hữu tỉ thì t =0
Giả sử a, b là số hữu tỉ dương, ngoài ra b không là bình phương của số hữu tỉ nào. Chứng minh rằng tồn tại số hữu tỉ c, d sao cho:
\(\sqrt{a+\sqrt{b}}=\sqrt{c}+\sqrt{d}\) thì \(a^2-b\) là bình phương của một số hữu tỉ. Điều ngược lại có đúng không?
Cho các số nguyên dương m, n không phải là số chính phương . Giả sử a, b là các số hữu tỉ sao cho \(a\sqrt{m}+b\sqrt{n}\)
là số hữu tỉ. CMR \(a\sqrt{m}+b\sqrt{n}=0\)
Cho a, b là số hữu tỉ, c, d là số hữu tỉ dương và c, d không là bình phương của số hữu tỉ nào. Chứng minh rằng nếu:
\(a+\sqrt{c}=b+\sqrt{d}\) thì \(\hept{\begin{cases}a=b\\c=d\end{cases}}\)
cho 2 số hữu tỉ r và s . CMR: s và r ko đồng thời =0 thì r+s là số vô tỉ
cho 2 số hữu tỉ dương a và b thỏa mãn a3 + 4a2b = 4a2 + b4
chứng minh sqrt{a} -1 là bình phương của một số hữu tỉ
Cho a và b là 2 số hữu tỉ khác 0. CMR tồn tại 2 số hữu tỉ x và y sao cho \(\left(a+b\sqrt{5}\right)\left(x+y\sqrt{5}\right)=b+a\sqrt{5}\)
Cho 2 số hữu tỉ a,b và số nguyên dương x không phải số chính phương. Chứng minh nếu \(a+b\sqrt{x}=0\Rightarrow a=b=0\\ \)
cho a,b,c là những số hữu tỉ khác 0 và a=b+c
chứng minh rằng : \(\sqrt{\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}}\) là một số hữu tỉ