Giả sử a,b là 2 số dương khác nhau thỏa mãn \(a-b=\sqrt{1-b^2}-\sqrt{1-a^2}\)
CMR \(a^2+b^2=1\)
cho a,b là các số dương khác nhau thỏa
a-b=\(\sqrt{1-b^2}-\sqrt{1-a^2}\) CMR a2+b2=1
Giả sử \(a\)và \(b\)là 2 số duong khác nhau va thỏa mãn:
\(a-b=\sqrt{1-b^3}-\sqrt{1-a^3}\)
CMR: \(a^2+b^2=1\)
Cho a, b là các số nguyên dương thỏa mãn \(a-b=\sqrt{1-b^2}-\sqrt{1-a^2}\). CMR: \(a^2+b^2=1\)
Cho a , b , c là các số thự dương thỏa mãn \(\sqrt{a}+\sqrt{b}+\sqrt{c}=3\)
CMR \(a^2\sqrt{a}+b^2\sqrt{b}+c^2\sqrt{c}+\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{b}}+\frac{1}{\sqrt{c}}\ge6\)
cho a;b;c là các số thực dương thỏa mãn a+b+c=3.CMR:\(\sqrt{\frac{a}{3b^2+1}}+\sqrt{\frac{b}{3c^2+1}}+\sqrt{\frac{c}{3a^2+1}}\ge\frac{3}{2}\)
Cho a,b,c là các số thực dương thỏa mãn\(a^2+b^2+c^2=1\).
CMR:\(\frac{1}{\sqrt{a^2+1}}+\frac{1}{\sqrt{b^2+1}}+\frac{1}{\sqrt{c^2+1}}\le\frac{9}{2\left(a+b+c\right)}\)
Cho 3 số thực dương thỏa mãn \(a\sqrt{1-b^2}+b\sqrt{1-c^2}+c\sqrt{1-a^2}=\frac{3}{2}\)
CMR: a^2 +b^2 +c^2 = 3/2
Cho M = \(\dfrac{a^2+b^2}{a+b}\) (a>0, b>0, a khác b). Giả sử a, b là các số dương phân biệt thỏa mãn a + b = 2. Chứng minh rằng M > 1.