Với mọi \(m\inℤ^+\), ta kí hiệu \(\sigma\left(n\right)\) là tổng các ước nguyên dương của \(n\) (bao gồm cả chính nó).
a) Chứng minh rằng, nếu \(\sigma\left(n\right)\) là số lẻ thì \(n=2^r.l^2\) với \(r,l\inℕ\), trong đó \(l\) là số lẻ.
b) Số tự nhiên \(n\) được gọi là "hoàn hảo" khi và chỉ khi \(\sigma\left(n\right)=2n\). CMR nếu \(n\) là số hoàn hảo chẵn thì \(n=2^{m-1}\left(2^m-1\right)\) với \(m\inℕ,m\ge2\) sao cho \(2^m-1\) là số nguyên tố.
Một số nguyên dương n được gọi là "số đẹp" nếu tồn tại các số nguyên dương a, b, c, d sao cho \(n=\frac{2015a^4+b^4}{2015c^4+d^4}\).
a) Chứng minh rằng có vô số "số đẹp".
b) Số 2014 có là "số đẹp" hay không?
Chứng tỏ rằng tập hợp các số tự nhiên N và tập hợp các số nguyên dương lẻ L là có cùng lực lượng
Cho biết tập hợp tất cả các giá trị của tham số m để phương trình 2 x 2 + 1 x 2 - 3 x + 1 x - 2 m + 1 = 0 có nghiệm là S = [ - a b ; + ∞ ) , với a, b là các số nguyên dương và a b là phân số tối giản. Tính T = a + b .
A. T = 13.
B. T = 17.
C. T = 49.
D. T = 3.
Giả sử A, B là tập số và x là một số đã cho. Tìm các cặp mệnh đề tương đương trong các mệnh đề sau:
P = "x ∈ A ∪ B " ; S = "x ∈ A và x ∈ B"
Q = "x ∈ A \ B" ; T = "x ∈ A hoặc x ∈ B"
R = "x ∈ A ∩ B" ; X = "x ∈ A và x ∉ B"
Cho biết tập hợp tất cả các giá trị của tham số m để phương trình 2 x 2 + 1 x 2 - 3 x + 1 x - 5 m + 1 = 0 có nghiệm là S = [ - a b ; + ∞ ) , với a, b là các số nguyên dương và a b là phân số tối giản. Tính T = a . b
A. T = -5.
B. T = 5.
C. T = 11.
D. T = 55
“Chứng minh rằng 2 là số vô tỉ”. Một học sinh đã lập luận như sau:
Bước 1: Giả sử 2 là số hữu tỉ, thế thì tồn tại các số nguyên dương m,n sao cho 2 = m n (1)
Bước 2: Ta có thể giả định thêm m n là phân số tối giản
Từ đó 2 n 2 = m 2 (2)
Suy ra m2 chia hết cho 2 => m chia hết cho 2 => ta có thể viết m = 2p
Nên (2) trở thành n 2 = 2 p 2
Bước 3: Như vậy ta cũng suy ra n chia hết cho 2 và cũng có thể viết n=2q
Và (1) trở thành 2 = 2 p 2 q = p q ⇒ m n không phải là phân số tối giản, trái với giả thiết
Bước 4: vậy 2 là số vô tỉ.
Lập luận trên đúng tới hết bước nào?
A. Bước 1
B. Bước 2
C. Bước 3
D. Bước 4
Đặt \(n=p_1^{\alpha_1}.p_2^{\alpha_2}...p_s^{\alpha_s}\) (phân tích tiêu chuẩn). Kí hiệu \(\sigma\left(n\right)=\sum\limits^s_{i=1}\alpha_i\). Chứng minh rằng tồn tại 2023 số nguyên dương liên tiếp sao cho trong đó có 2007 số nguyên \(n\) thỏa \(\sigma\left(n\right)< 11\)
Chứng minh các số có dạng \(a^2+1\) thì các ước nguyên tố lẻ của số đó luôn có dạng 4m+1