Ta có : \(\frac{x}{x-3}>1\) ( ĐKXĐ : \(x\ne3\) )
\(\Leftrightarrow\frac{x}{x-3}-1>0\)
\(\Leftrightarrow\frac{x-x+3}{x-3}>0\)
\(\Leftrightarrow\frac{3}{x-3}>0\)
\(\Leftrightarrow x-3>0\)
\(\Leftrightarrow x>3\)
Vậy : \(x>3\) thỏa mãn đề.
\(\frac{x}{x-3}-1>0\)
<=> \(\frac{3}{x-3}>0\)
Vì 3 > 0 nên để \(\frac{3}{x-3}>0\) thì x - 3 > 0 <=> x > 3
\(\frac{x}{x-3}>1\left(x\ne3\right)\)
\(\Leftrightarrow\frac{x}{x-3}-1>0\)
\(\Leftrightarrow\frac{x}{x-3}-\frac{x-3}{x-3}>0\)
\(\Leftrightarrow\frac{x-x+3}{x-3}>0\)
\(\Leftrightarrow\frac{3}{x-3}>0\)
Vì 3>0 => Để \(\frac{3}{x-3}\)> 0 thì x-3 >0
=> x>3
Vậy để \(\frac{x}{x-3}>1\)thì x>3