(\(\frac{x+1}{99}+\frac{x+2}{98}+\frac{x+3}{97}+\frac{x+4}{96}\))+4=0
=)\(\frac{x+100}{99}+\frac{x+100}{98}+\frac{x+100}{97}+\frac{x+100}{96}\)=0
=)\(\left(x+100\right).\left(\frac{1}{99}+\frac{1}{98}+\frac{1}{97}+\frac{1}{96}\right)=0\)
Mà \(\left(\frac{1}{99}+\frac{1}{98}+\frac{1}{97}+\frac{1}{96}\right)>0\)
=)\(x+100=0\)
=)\(x=-100\)
Vậy \(x=-100\)
\(\frac{x+1}{99}+\frac{x+2}{98}+\frac{x+3}{97}+\frac{x+4}{96}+4=0\)
\(\frac{x+1}{99}+1+\frac{x+2}{98}+1+\frac{x+3}{97}+1+\frac{x+4}{96}+1=0\)
\(\frac{x+100}{99}+\frac{x+100}{98}+\frac{x+100}{97}+\frac{x+100}{96}=0\)
\(\left(x+100\right)\left(\frac{1}{99}+\frac{1}{98}+\frac{1}{97}+\frac{1}{96}\right)=0\)
x+100=0 vì (1/99+1/98+1/97+1/96) khác 0
x=0-100
x=-100
\(\frac{x+1}{99}+\frac{x+2}{98}+\frac{x+3}{97}+\frac{x+4}{96}=-4\)
\(\frac{x+1}{99}+1+\frac{x+2}{98}+1+\frac{x+3}{97}+1+\frac{x+4}{96}+1=0\)
\(\frac{x+100}{99}+\frac{x+100}{98}+\frac{x+100}{97}+\frac{x+100}{96}=0\)
\(\left(x+100\right)\left(\frac{1}{99}+\frac{1}{98}+\frac{1}{97}+\frac{1}{96}\right)=0\)
Vì \(\frac{1}{99}+\frac{1}{98}+\frac{1}{97}+\frac{1}{96}\ne0\)
nên x+100=0
x= -100
ta có \(\frac{x+1}{99}+1+\frac{x+2}{98}+1+\frac{x+3}{97}+1+\frac{x+4}{96}+1=0\)
<=> \(\frac{x+100}{99}+\frac{x+100}{98}+\frac{x+100}{97}+\frac{x+100}{96}=0\)
<=> \(\left(x+100\right)\left(\frac{1}{99}+\frac{1}{98}+\frac{1}{97}+\frac{1}{96}\right)=0\)
<=> \(x+100=0\) vì ( \(\frac{1}{99}+\frac{1}{98}+\frac{1}{97}+\frac{1}{96}>0\)
<=> \(x=-100\)
vậy x = -100