\(\frac{x}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+....+\frac{1}{100.103}=\frac{102}{103}\)
\(\Leftrightarrow\frac{x-1}{1.4}+\left(\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+...+\frac{1}{100.103}\right)=\frac{102}{103}\)
\(\Leftrightarrow\frac{3\left(x-1\right)}{1.4}+\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{100}-\frac{1}{103}\right)=\frac{306}{103}\)
\(\Leftrightarrow\frac{3\left(x-1\right)}{1.4}+\frac{102}{103}=\frac{306}{103}\)
\(\Leftrightarrow\frac{3}{4}\left(x-1\right)=\frac{204}{103}\)
\(\Leftrightarrow x-1=\frac{272}{103}\)
\(\Leftrightarrow x=\frac{375}{103}\)