\(\frac{x-1.2}{3}=\frac{1}{2}+1\frac{1}{2}\)
\(\frac{x-2}{3}=2\)
\(x-2=2.3=6\)
\(x=6+2=8\)
\(\frac{x-1.2}{3}=\frac{1}{2}+1\frac{1}{2}\)
\(=\frac{x-2}{3}=2\)
\(\Rightarrow x-2=2\cdot3\)
\(\Rightarrow x=6+2=8\)
\(\frac{x-1.2}{3}=\frac{1}{2}+1\frac{1}{2}\)
\(\frac{x-2}{3}=2\)
\(x-2=2.3=6\)
\(x=6+2=8\)
\(\frac{x-1.2}{3}=\frac{1}{2}+1\frac{1}{2}\)
\(=\frac{x-2}{3}=2\)
\(\Rightarrow x-2=2\cdot3\)
\(\Rightarrow x=6+2=8\)
Tìm số nguyên x biết:
a/ \(\frac{2}{1.2}+\frac{2}{2.3}+\frac{2}{2.6}+\frac{2}{2.10}+....+\frac{2}{x\left(x+1\right)}=1\frac{1991}{1993}\)
b/ \(1+\frac{1}{3}+\frac{1}{6}+.....+\frac{2}{x\left(x+1\right)}=4\)
Tìm x , biết : \(x+\frac{1}{1.2}+\frac{2}{2.4}+\frac{3}{4.7}+\frac{4}{7.11}+\frac{5}{11.16}=1\)
Bài 2
\(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^n}\)
\(B=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{9.10}\)
\(C=\frac{1}{1.2}+\frac{1}{2.3}+...\frac{1}{99.100}\)
\(D=\frac{1}{1.6}+\frac{1}{6.11}+...+\frac{1}{496.501}\)
Tìm x thoả mãn:
a)\(\frac{1}{2}x-\frac{3}{4}x-\frac{7}{3}=-\frac{5}{6}\)
b)\(\frac{4}{5}x-x-\frac{3}{2}x+\frac{4}{3}=\frac{1}{2}-\frac{6}{5}\)
c)\(\frac{1}{1.2}+\frac{1}{2.3}+......+\frac{1}{x.\left(x+1\right)}=\frac{2009}{2010}\)
d)\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x\left(x+1\right)}=1\frac{2013}{2015}\)
e)\(\frac{1}{3.5}+\frac{1}{5.7}+.....+\frac{1}{\left(2x+1\right)\left(2x+3\right)}=\frac{100}{609}\)
Tính :
a) (1+2+3+..+2017+2018).(\(\frac{3}{1.2}+\frac{3}{2.3}+...+\frac{3}{2018.2019}\)) . \(\left(\frac{1}{2}-\frac{1}{3}-\frac{1}{6}\right)\)
b) A= \(1.2.3+2.3.4+3.4.5+...+x.\left(x+1\right).\left(x+2\right)\)
Tìm x biết:
\(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{199.200}+\frac{1}{2}x=1\frac{1}{2}\)
Tìm x, biết
\(\left(x+\frac{1}{2}\right)+\left(x+\frac{1}{2}\right)+\left(x+\frac{1}{2}\right)=1\)
\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2.\left(x+1\right)}=\frac{99}{100}\)
Tim x
a) \(3\frac{1}{2}x-\frac{x}{2}+x=3,5:1\frac{1}{5}\)
b) \(\left(x-\frac{3}{1.2}\right)+\left(x-\frac{3}{2.3}\right)+...+\left(x-\frac{3}{99.100}\right)=1\)
Tìm số nguyên x, biết: \(\frac{2}{1.2}+\frac{2}{2.3}+\frac{2}{2\cdot6}+\frac{2}{2.10}+.....+\frac{2}{x\left(x+1\right)}=1\frac{1991}{1993}\)
\(\frac{x}{200}=\frac{1^2}{1.2}.\frac{2^2}{2.3}...\frac{99^2}{99.100}\) tìm x nha
\(\frac{x}{101}=\frac{2^2}{1.3}.\frac{3^2}{2.4}...\frac{100^2}{99.101}\)