tính:
\(\frac{\sqrt{2}+\sqrt{5-\sqrt{14}}}{\sqrt{12}}\)
giúp mk vs các bn
Tính :
\(\frac{\sqrt{2}+\sqrt{5-\sqrt{14}}}{\sqrt{12}}\)
Các bn giúp mk câu này vs
Tính :
a ) \(S=\frac{1}{\sqrt{1}\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{5}}+\frac{1}{\sqrt{5}+\sqrt{7}}+.....+\)\(\frac{1}{\sqrt{2017}+\sqrt{2019}}\)
b ) \(S=\frac{1}{\sqrt{2}+\sqrt{4}}+\frac{1}{\sqrt{4}+\sqrt{6}}+....+\frac{1}{\sqrt{100}+\sqrt{102}}\)
c ) \(S=\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+.....+\frac{1}{\sqrt{100}+\sqrt{101}}\)
d ) \(S=\frac{1}{\sqrt{3}+\sqrt{6}}+\frac{1}{\sqrt{6}+\sqrt{9}}+\frac{1}{\sqrt{9}+\sqrt{12}}+....+\frac{1}{\sqrt{2016}+\sqrt{2019}}\)
Cho \(A=\frac{x\sqrt{x}+5\sqrt{x}-12}{x-\sqrt{x}-6}-\frac{2\sqrt{x}-6}{\sqrt{x}+2}+\frac{\sqrt{x}+3}{3-\sqrt{x}}.\)
1.Rút gọn A
Chứng minh A,B là số nguyên với:
A = \(\sqrt{6-2\sqrt{5}}\)- \(\sqrt{6+2\sqrt{5}}\)
B= \(\frac{\sqrt{3-2\sqrt{2}}}{\sqrt{17}-12\sqrt{2}}-\frac{\sqrt{3+2\sqrt{2}}}{\sqrt{17+12\sqrt{2}}}\)
P=\(\frac{x\sqrt{x}-3}{x-2\sqrt{x}-3}-\frac{2\left(\sqrt{x}-3\right)}{\sqrt{x}+1}+\frac{\sqrt{x}+3}{3-\sqrt{x}}\)
a) Rút gọn P
b) Tính P khi x=\(14-6\sqrt{5}\)
c) Tính GTNN của P
tính:\(\frac{1}{\sqrt{1}-\sqrt{2}}-\frac{1}{\sqrt{2}-\sqrt{3}}+\frac{1}{\sqrt{3}-\sqrt{4}}-\frac{1}{\sqrt{4}-\sqrt{5}}+\frac{1}{\sqrt{5}-\sqrt{6}}-\frac{1}{\sqrt{6}-\sqrt{7}}+\frac{1}{\sqrt{7}-\sqrt{8}}-\frac{1}{\sqrt{8}-\sqrt{9}}\)
a/\(\frac{5-2\sqrt{5}}{\sqrt{5}}+\frac{20}{5+\sqrt{5}}\)
b/\(\frac{3+2\sqrt{3}}{\sqrt{3}}+\frac{2+\sqrt{2}}{\sqrt{2}}-\left(\sqrt{3}+\sqrt{2}\right)\)
\(\frac{1}{\sqrt{2x}-3}+\frac{4}{\sqrt{y}-2}+\frac{16}{\sqrt{3z-1}}+\sqrt{2x-3}+\sqrt{y-2}+\sqrt{3z-1}=14\)
Tìm x,y,z