ĐK \(0\le x\le4\)
\(\Leftrightarrow\frac{\left(4-x\right)!x!}{24}-\frac{\left(5-x\right)\left(4-x\right)!x!}{120}=\frac{\left(6-x\right)\left(5-x\right)\left(4-x\right)!x!}{720}\)
\(\Leftrightarrow\left(4-x\right)!x!\left[\frac{1}{24}-\frac{5-x}{120}-\frac{\left(6-x\right)\left(5-x\right)}{720}\right]=0\)
\(\frac{\Leftrightarrow1}{24}-\frac{5-x}{120}-\frac{\left(6-x\right)\left(5-x\right)}{720}=0\)do \(\left(4-x\right)!x!\ne0\forall x\)
\(\Leftrightarrow\frac{30-6\left(5-x\right)-\left(30-11x+x^2\right)}{720}=0\Leftrightarrow30-30+6x-30+11x-x^2=0\)
\(\Leftrightarrow x^2-17x+30=0\Rightarrow\orbr{\begin{cases}x=2\left(tm\right)\\x=15\left(l\right)\end{cases}}\)
Vậy x=2