\(\frac{2^4.5^7.11^3}{2^4.5^611^2}=5.11=55\)
\(\frac{2^4.5^7.11^3}{2^4.5^611^2}=5.11=55\)
\(\frac{\left(2^3.5^4.11\right).\left(2.5^3.11^2\right)}{\left(2^2.5^311\right)^2}\)
Thực hiện phép tính:
a) \(\frac{\left(2^3.3^3\right)^2.5^5}{\left(2^2\right).\left(3^2.5^2\right)^2}\)
b) \(\frac{2^3.11-2^3.8}{6.\left(-1\right)^{2014}}\)
C = ( 2^3.5^4.11).(2.5^3.11^2)/(2^2.5^3.11)^2
R = \(\left\{2015-2016^0.\left[2^3.5-\left(-1\right)^{2016}.\frac{1}{2^{19}}.\left(2.5^2-2^4.3\right)^{20}\right]\right\}-10^3\)
Rút gọn phân số:
a)\(\frac{2.\left(-13\right).9.10}{\left(-3\right).4.\left(-5\right).26}\)
b)\(\frac{2^3.3^4}{2^2.3^2.5};\frac{2^4.5^2.11^2.7}{2^3.5^3.7^2.11}\)
c)\(\frac{121.75.130.169}{39.60.11.198}\)
d)\(\frac{1998.1990+3978}{1992.1991-3984}\)
chứng tỏ rằng với mọi n thuộc N* ta có :
\(\frac{1}{2.5}+\frac{1}{5.8}+...+\frac{1}{\left(3n-1\right)\left(3n+2\right)}=\frac{n}{2\left(3n+2\right)}\)
\(B=\frac{\left(3^2.5^2.7^2\right).\left(3^3.7^2\right)}{\left(3.5.7^2\right)^2}\)
giải cả bài nhé
\(B=\frac{\left(3^2.5^2.7^2\right).\left(3^3.7^2\right)}{\left(3.5.7^2\right)^2}\)
giải cả bài nhé
thực hiện phép tính
\(a=\left[\left(3^2.5^2.4^3\right):\left(2^3.3^2\right)\right].2005^0\)