Chứng minh nếu a, b, c# 0 thỏa mãn \(\frac{ab+ac}{2}=\frac{bc+ba}{3}=\frac{ca+cb}{4}thì\frac{a}{3}=\frac{b}{5}=\frac{c}{15}\)
Có a;b;c khác 0 và \(\frac{ab+ac}{2}=\frac{bc+ba}{3}=\frac{ca+cb}{4}\)
Chứng minh a/3=b/5=c/15
Với các số a, b, c khác 0. CMR
nếu \(\frac{ab+ac}{2}=\frac{bc+ba}{3}=\frac{ca+cb}{4}\)thì \(\frac{a}{3}=\frac{b}{5}=\frac{c}{15}\)
CMR: Nếu a,b,c là các số khác 0 thoả mãn: \(\frac{ab+ac}{2}=\frac{bc+ba}{3}=\frac{ca+cb}{4}\)thì \(\frac{a}{3}=\frac{b}{5}=\frac{c}{15}\)
Với các số a, b, c khác 0. CMR
nếu \(\frac{ab+ac}{2}=\frac{bc+ba}{3}=\frac{ca+cb}{4}\)thì \(\frac{a}{3}=\frac{b}{5}=\frac{c}{15}\)
Với các số a, b, c khác 0. CMR
nếu \(\frac{ab+ac}{2}=\frac{bc+ba}{3}=\frac{ca+cb}{4}\)thì \(\frac{a}{3}=\frac{b}{5}=\frac{c}{15}\)
Với các số a, b, c khác 0. CMR
nếu \(\frac{ab+ac}{2}=\frac{bc+ba}{3}=\frac{ca+cb}{4}\)thì \(\frac{a}{3}=\frac{b}{5}=\frac{c}{15}\)
Với các số a, b, c khác 0. CMR
nếu \(\frac{ab+ac}{2}=\frac{bc+ba}{3}=\frac{ca+cb}{4}\)thì \(\frac{a}{3}=\frac{b}{5}=\frac{c}{15}\)
Với các số a, b, c khác 0. CMR
nếu \(\frac{ab+ac}{2}=\frac{bc+ba}{3}=\frac{ca+cb}{4}\)thì \(\frac{a}{3}=\frac{b}{5}=\frac{c}{15}\)