Cho a + b + c + d khác 0 và \(\frac{a}{b+c+d}=\frac{b}{a+c+d}=\frac{c}{a+b+d}=\frac{d}{a+b+c}\)
Tính giá trị biểu thức \(A=\frac{a+b}{c+d}+\frac{b+c}{a+d}+\frac{c+d}{a+b}+\frac{d+a}{b+c}\)
cho a,b,c,d thoả mãn \(\frac{a}{b+c+d}+\frac{b}{c+d+a}+\frac{c}{d+a+b}+\frac{d}{a+b+c}=1\)
Tính \(\frac{a^2}{b+c+d}+\frac{b^2}{c+d+a}+\frac{c^2}{d+a+b}+\frac{d^2}{a+b+c}\)
Cho \(\frac{a}{b}=\frac{c}{d}\)( b,d khác 0). CMR
a) \(\frac{a-b}{a}=\frac{c-d}{c}\)
b) \(\frac{a}{a+b}=\frac{c}{c+d}\)
c) \(\frac{a}{a-b}=\frac{c}{c-d}\)
a) \(\frac{a}{a+b+c}+\frac{b}{b+c+d}+\frac{c}{c+d+a}+\frac{d}{d+a+b}\)= ?
b) Tìm các STN a, b, c, d (khác nhau) sao cho :
\(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{1}{d^2}=1\)
\(Cho:\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{d}{a}\) biết \(a=b=c=d\). Tính tổng \(M=\frac{2a-b}{c+d}+\frac{2b-c}{a+d}+\frac{2c-d}{a+d}+\frac{2d-a}{b+c}\)
Chứng minh rằng nếu\(\frac{a}{b}=\frac{c}{d}\left(a,b,c,d\ne0\right)\)thì
a,\(\frac{a-b}{a}=\frac{c-d}{c}\)
b,\(\frac{a+b}{c+d}=\frac{a-b}{c-d}\)
cho a,b,c,d>0 chứng minh \(\frac{a}{b+c}+\frac{b}{c+d}+\frac{c}{a+d}+\frac{d}{a+b}\ge2\)
\(CMR:\frac{a}{b}=\frac{c}{d}\ne thì\frac{a+b}{a-b}=\frac{c+d}{c-d}với:a,b,c,d\ne0\)
cho \(\frac{a}{b}=\frac{c}{d}\) chứng mình rằng :
C)\(\frac{b}{a+b}=\frac{d}{c+d}\)
D)\(\frac{b}{a-b}=\frac{d}{c-d}\)