Bài 1:
a, A=\(\sqrt{2-\sqrt{3}}+\sqrt{2+\sqrt{3}}\)
b, B= \(\left(\frac{1}{\sqrt{5}-\sqrt{2}}-\frac{1}{\sqrt{5}+\sqrt{2}}+1\right).\frac{1}{\left(\sqrt{2}+1\right)^2}\)
Bài 2: Giải pt
a,\(\frac{5\sqrt{x}-2}{8\sqrt{x}+2,5}=\frac{2}{7}\)
b, \(\sqrt{x^2-6x+9}=\sqrt{4+2\sqrt{3}}\)
Bài 3:
A=\(\left(\frac{x+2}{x\sqrt{x}+1}-\frac{1}{\sqrt{x}+1}\right).\frac{4\sqrt{x}}{3}\)
tìm x để biểu thức có nghĩa
\(A=\frac{x+1}{\sqrt{x-2}}\)
\(B=\sqrt{9-x^2}+\frac{1}{x-2}\)
\(C=\sqrt{-6x^2}+\sqrt{1-x^2}\)
\(D=\frac{\sqrt{x-1}+\sqrt{x-2}}{\sqrt{x^2}-4\left(x-1\right)}\)
\(E=\frac{15\sqrt{x}-11}{x+2\sqrt{x}-3}-\frac{3\sqrt{x}-2}{\sqrt{x}-1}-\frac{2\sqrt{x}+3}{\sqrt{x+3}}\)
\(F=\sqrt{x^2-6x+9}+\sqrt{x-2\sqrt{x-1}}\)
1) Rút gọn biểu thức:
a, \(\sqrt{2+\sqrt{3}}-\sqrt{2-\sqrt{3}}\)
b, \(\sqrt{4-\sqrt{7}}+\sqrt{4+\sqrt{7}}\)
2) Giải phương trình:
a, \(\left(x\sqrt{\frac{6}{x}}+\sqrt{\frac{2x}{3}}+\sqrt{6x}\right).\sqrt{6x}=2\)
b, \(\left(\sqrt{\frac{3}{x}}+\sqrt{\frac{x}{3}}+\sqrt{3x}\right).\sqrt{3x}=3\)
c, \(\sqrt{x^2+2x+1}-\sqrt{x^2-1}=0\)
d, \(\sqrt{x}+\sqrt{x+1}=\frac{1}{\sqrt{x}}\)
giúp vs
1)a) n thuộc N*: rút gọn:
K = \(\sqrt{1+\frac{1}{n^2}+\frac{1}{\left(n+1\right)^2}}\)
b) tính
I = \(\sqrt{1+\frac{1}{1^2}+\frac{1}{2^2}}+\sqrt{1+\frac{1}{2^2}+\frac{1}{3^2}}+\sqrt{1+\frac{1}{3^2}+\frac{1}{4^2}}+...+\sqrt{1+\frac{1}{2015^2}+\frac{1}{2016^2}}+\sqrt{1+\frac{1}{2016^2}+\frac{1}{2017^2}}\)2) A= \(\sqrt{x^2-6x+9}-\sqrt{x^2+6x+9}\)
a) rút gọn A
b) tìm x đề A=1
3) rút gọn B = \(\sqrt{x+\sqrt{2x-1}}-\sqrt{x-\sqrt{2x-1}}\)
4) tính: \(\frac{\sqrt{\sqrt{5}+2}+\sqrt{\sqrt{5}-2}}{\sqrt{\sqrt{5}+1}}-\sqrt{3-2\sqrt{2}}\)
C= \(\sqrt{4+\sqrt{10+2\sqrt{5}}}+\sqrt{4-\sqrt{10+2\sqrt{5}}}\)
giải phương trình
a) \(\left(x+\frac{5-x}{\sqrt{x}+1}\right)^2+\frac{16\sqrt{x}\left(5-x\right)}{\sqrt{x}+1}-16\)\(=0\)
b) \(\sqrt{2x-\frac{3}{x}}+\sqrt{\frac{6}{x}-2x}=1+\frac{3}{2x}\)
c) \(\sqrt{2x+1}+\frac{2x-1}{x+3}-\left(2x-1\right)\sqrt{x^2+4}-\sqrt{2}=0\)
d) \(\sqrt{x+2+3\sqrt{2x-5}}+\sqrt{x-2-\sqrt{2x-5}}=2\sqrt{2}\)
Rút gọn các biểu thức sau:
\(a.\frac{1}{\sqrt{2}-\sqrt{3}}-\sqrt{\frac{3\sqrt{2}-2\sqrt{3}}{3\sqrt{2}+2\sqrt{3}}}\) \(b.\sqrt{\frac{4}{\left(2-\sqrt{5}\right)^2}}-\sqrt{\frac{4}{\left(2+\sqrt{5}\right)^2}}\)
\(c.\sqrt{\frac{3+2\sqrt{2}}{3-2\sqrt{2}}}+\sqrt{\frac{\sqrt{2}-1}{\sqrt{2}+1}}\) \(d.\frac{1}{\sqrt{5}-2}.\sqrt{\frac{2\sqrt{5}-4}{2\sqrt{5}+4}}\)
\(e.x+1-\sqrt{x^2-2x+1}\left(x>=1\right)\) \(f.3x+\sqrt{9x^2+6x+1}\left(x< \frac{1}{3}\right)\)
\(g.\frac{1}{9x^2-1}.\sqrt{1-6x+9x^2}\left(x< =\frac{1}{3}\right)\) \(h.\frac{a-b}{3b}.\sqrt{\frac{4a^2b^4}{a^2-2ab+b^2}}\left(a< b< 0\right)\)
chứng minh \(\left(x\sqrt{\frac{^6}{x}}+\sqrt{\frac{2x}{3}}-\sqrt{6x}\right)\div\sqrt{6x}=2\frac{1}{3}\)
với x lớn hơn 0.
Chứng minh các đẳng thức sau:
a) \(\frac{3}{2}\sqrt{6}+2\sqrt{\frac{2}{3}}-4\sqrt{\frac{3}{2}}=\frac{\sqrt{6}}{6}\)
b) \(\left(x\sqrt{\frac{6}{x}}+\sqrt{\frac{2X}{3}}+\sqrt{6X}\right):\sqrt{6X}=2\frac{1}{3}\)với x > 0
Giải phương trình:
1)\(\sqrt{9x^2-15x+9}+\sqrt{x^3+3x^2-3x+1}+x=2\)
2)\(\sqrt{3x^2-1}+\sqrt{x^2-x}-x\sqrt{x^2+1}=\frac{1}{2\sqrt{2}}\)
3)\(\sqrt{-4x^4y^2+16x^2y+9}-\sqrt{x^2y^2-2y^2}=2\left(x^2+\frac{1}{x^2}\right)\left(vớix>0\right)\)
4)\(x^3-3x^2+2\sqrt{\left(x+2\right)^3}-6x=0\)
5)\(4x^2-11x+10=\left(x+1\right)\sqrt{2x^2-6x+2}\)