\(\frac{4}{1.3}+\frac{4}{3.5}+........+\frac{4}{2011.2013}\)
\(=2\left(\frac{2}{1.3}+\frac{2}{3.5}+........+\frac{2}{2011.2013}\right)\)
\(=2.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+........+\frac{1}{2011}-\frac{1}{2013}\right)\)
\(=2\left(1-\frac{1}{2013}\right)\)
\(=2.\frac{2012}{2013}\)
\(=\frac{4024}{2013}\)