\(\frac{2}{1+a^2}=\left(\frac{2}{1+a^2}+a-2\right)+2-a=\frac{a\left(a-1\right)^2}{a^2+1}+2-a\ge2-a\)
\(\frac{2}{1+a^2}=\left(\frac{2}{1+a^2}+a-2\right)+2-a=\frac{a\left(a-1\right)^2}{a^2+1}+2-a\ge2-a\)
Cho a,b,c dương và a+b+c ≤ \(\frac{3}{2}\) Tìm Min của S biết S = \(a^2+b^2+c^2+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
tìm a, b, c biết \(a=\frac{2b^2}{1+b^2};b=\frac{2c^2}{1+c^2};c=\frac{a^2}{1+a^2}\)
biết \(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=3\)tìm gtnn của \(P=\frac{ab^2}{a+b}+\frac{bc^2}{b+c}+\frac{ca^2}{c+a}\)
cho các số thực dương a,b,c thỏa mãn \(\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}\le1\) 1 tìm GTNN của P = \(\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ca+a^2}\)
đặt \(P=\frac{1}{1-ab}+\frac{1}{1-bc}+\frac{1}{1-ca}\)
\(\Rightarrow P-3=\frac{ab}{1-ab}+\frac{bc}{1-bc}+\frac{ca}{1-ca}\le\frac{ab}{1-\frac{a^2+b^2}{2}}+\frac{bc}{1-\frac{b^2+c^2}{2}}+\frac{ca}{1-\frac{c^2+a^2}{2}}\)
\(\le\frac{1}{2}.\frac{\left(a+b\right)^2}{\left(a^2+c^2\right)+\left(b^2+c^2\right)}+\frac{1}{2}.\frac{\left(b+c\right)^2}{\left(a^2+b^2\right)+\left(c^2+a^2\right)}+\frac{1}{2}.\frac{\left(c+a\right)^2}{\left(b^2+c^2\right)+\left(b^2+a^2\right)}\)
\(\le\frac{1}{2}.\left(\frac{a^2}{a^2+c^2}+\frac{b^2}{b^2+c^2}+\frac{b^2}{a^2+b^2}+\frac{c^2}{c^2+a^2}+\frac{c^2}{b^2+c^2}+\frac{a^2}{b^2+a^2}\right)=\frac{3}{2}\)
\(\Rightarrow P-3\le\frac{3}{2}\Rightarrow P\le\frac{9}{2}\)
cho 3 số dương a,b,c. biết a+b+c=3. Cmr
\(\frac{a}{1+b^2}+\frac{b}{1+c^2}+\frac{c}{1+a^2}\ge\frac{3}{2}\)
1,Cho a,b,c>0 thỏa mãn a+b+c=abc.CMR:
\(\frac{bc}{a\left(1+bc\right)}+\frac{ca}{b\left(1+ca\right)}+\frac{ab}{c\left(1+ab\right)}\ge\frac{3\sqrt{3}}{4}\)
2,Cho a,b,c>0 thỏa mãn \(a^2+b^2+c^2=3\)
Tìm GTLN của P= \(\sqrt{\frac{a^2}{a^2+b+c}}+\sqrt{\frac{b^2}{b^2+c+a}}+\sqrt{\frac{c^2}{c^2+a+b}}\)
3,Cho a,b,c>0 thỏa mãn a+b+c=3.
Tìm GTLN của Q= \(2\sqrt{abc}\left(\frac{1}{\sqrt{3a^2+4b^2+5}}+\frac{1}{\sqrt{3b^2+4c^2+5}}+\frac{1}{\sqrt{3c^2+4a^2+5}}\right)\)
4,Cho a,b,c>0.
Tìm GTLN của P= \(\frac{\sqrt{ab}}{c+3\sqrt{ab}}+\frac{\sqrt{bc}}{a+3\sqrt{bc}}+\frac{\sqrt{ca}}{b+3\sqrt{ca}}\)
Tìm min,max của P=xyz biết A= \(\frac{8-x^2}{16+x^4}+\frac{8-y^2}{16+y^4}+\frac{8-z^2}{16+z^4}\ge0.\)
Cho a;b;c >0 thỏa mã \(a+b+c\le3\)Tìm min P \(=\left(3+\frac{1}{a}+\frac{1}{b}\right)\left(3+\frac{1}{b}+\frac{1}{c}\right)\left(3+\frac{1}{c}+\frac{1}{a}\right)\)
Cho a,b >0 và a+b=1
TÌm MinS
S=\(\frac{a^3}{a+1}+\frac{b^3}{b+1}\)
2. Cho 0<a,b,c<2 . CM
\(\frac{1}{2-a}+\frac{1}{2-b}+\frac{1}{2-c}>=\frac{3}{2}+\frac{a^2+b^2+c^2}{2}\)