dãy số 2, 6, 12, 20...9900 tách ra thành 1.2, 2.3, 3.4, 4.5,..., 99.100
nghĩa là mình có công thức ∑ (i=1 -> 99) (2010) / (99.(99+1))
(2010). ∑(i=1 -> 99) (99/100)
2010 . (99/100) = 1989,9
dãy số 2, 6, 12, 20...9900 tách ra thành 1.2, 2.3, 3.4, 4.5,..., 99.100
nghĩa là mình có công thức ∑ (i=1 -> 99) (2010) / (99.(99+1))
(2010). ∑(i=1 -> 99) (99/100)
2010 . (99/100) = 1989,9
Tính A = \(\frac{2010}{2}\) +\(\frac{2010}{6}\) +\(\frac{2010}{12}\) +..........+\(\frac{2010}{9900}\)
Choa,b,c,d khác 0:
\(\frac{x^{2010}+y^{2010}z^{2010}+t^{2010}}{a^2+b^2+c^2+d^2}=\frac{x^{2010}}{a^2}+\frac{y^{2010}}{b^2}+\frac{z^{2010}}{c^2}+\frac{t^{2010}}{d^2}\)
Tính\(T=x^{2010}+y^{2010}+z^{2010}+t^{2010}\)
Rút gọn
A=\(\frac{3^{2010}-6^{2010}+9^{2010}-12^{2010}+15^{2010}-18^{2010}}{1+2^{2010}-3^{2010}+4^{2010}-5^{2010}+6^{2010}}\)
rút gọn biểu thức: P=\(\frac{3^{2010}-6^{2010}+9^{2010}-12^{2010}+15^{2010}-18^{2010}}{-1+2^{2010}-3^{2010}+4^{2010}-5^{2010}+6^{2010}}\)
tính \(2009-\frac{2010}{3}-\frac{2010}{6}-\frac{2010}{15}-\cdot\cdot\cdot-\frac{2010}{45}\)
Tính tổng
M = \(\left(1-\frac{1}{1-2010}\right)\left(2-\frac{1}{1-\frac{2010}{2}}\right)\left(3-\frac{1}{1-\frac{2010}{3}}\right)....\left(5000-\frac{1}{1-\frac{5000}{3}}\right)\)
tính A=2010/2+2010/6+2010/12+....+2010/9900
Cho các số a,b,c,d khác 0 . Tính
T=x^2011+y^2011+z^2011+t^2011
Biết \(\frac{x^{2010}+y^{2010}+z^{2010}+t^{2010}}{a^2+b^2+c^2+d^2}=\frac{x^{2010}}{a^2}+\frac{y^{2010}}{b^2}+\frac{z^{2010}}{c^2}+\frac{t^{2010}}{d^2}\)
Cho a,b,c,d khac 0. Tính x2011+y2011+z2011+t2011
Biết :\(\frac{x^{2010}+y^{2010}+z^{2010}+t^{2010}}{a^2+b^2+c^2+d^2}=\frac{x^{2010}}{a^2}+\frac{y^{2010}}{b^2}+\frac{z^{2010}}{c^2}+\frac{t^{2010}}{d^2}\)