\(\frac{2000\cdot2001-1000}{2000\cdot2000+1000}\)
\(=\frac{2000\cdot2000+2000-1000}{2000\cdot2000+1000}\)
\(=\frac{2000\cdot2000+1000}{2000\cdot2000+1000}\)
\(=1.\)
\(\frac{2000\cdot2001-1000}{2000\cdot2000+1000}\)
\(=\frac{2000\cdot2000+2000-1000}{2000\cdot2000+1000}\)
\(=\frac{2000\cdot2000+1000}{2000\cdot2000+1000}\)
\(=1.\)
2000x2001-1000/2000x2000+1000
\(\frac{999}{1000}+\frac{998}{1000}+\frac{997}{1000}+...+\frac{1}{1000}\)
\(y=\frac{998}{1000}+\frac{997}{1000}+\frac{996}{1000}+.......+\frac{1}{1000}\)
\(y=\frac{999}{1000}+\frac{998}{1000}+\frac{997}{1000}+...+\frac{1}{1000}\)
giải giúp đi
\(y=\frac{999}{1000}+\frac{998}{1000}+\frac{997}{1000}+....+\frac{1}{1000}\)
Tính tổng giúp mih nha
1.Tính C=\(\frac{\left(1+\frac{1999}{1}\right)\left(1+\frac{1999}{2}\right)\left(1+\frac{1999}{3}\right)...\left(1+\frac{1999}{1000}\right)}{\left(1+\frac{1000}{1}\right)\left(1+\frac{1000}{2}\right)\left(1+\frac{1000}{3}\right)...\left(1+\frac{1000}{1999}\right)}\)
Tính biểu thức:
\(A=\left(1-\frac{1}{1000}\right).\left(1-\frac{2}{1000}\right).\left(1-\frac{3}{1000}\right).....\left(1-\frac{50000^{1000}}{1000}\right)\)
\(A=\frac{\left(1+\frac{1999}{1}\right)\left(1+\frac{1999}{2}\right)\left(1+\frac{1999}{3}\right)...\left(1+\frac{1999}{1000}\right)}{\left(1+\frac{1000}{1}\right)\left(1+\frac{1000}{2}\right)\left(1+\frac{1000}{3}\right)...\left(1+\frac{1000}{1999}\right)}\)
hỏi a = ?
\(\frac{999}{1000}+\frac{998}{1000}+\frac{997}{1000}+....\frac{1}{1000}\)
Giúp với ghi phép tính lun nhé .