\(cho\frac{1}{c}=\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}\right)cmr\frac{a}{b}=\frac{a-c}{c-b}\) (a,b,c khác 0; c khác b)
Cho \(\frac{1}{c}=\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}\right)\)(với a,b,c khác 0, b khác c)
CMR:\(\frac{a}{b}=\frac{a-c}{c-b}\)
Giúp mk nhé mina
cho \(\frac{1}{c}=\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}\right)\) VỚI a,b,c khác 0;b khác c
CMR \(\frac{a}{b}=\frac{a-c}{c-b}\)
Cho a,b ,c đều khác 0 và a+b+c khác 0
\(\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{c+a-b}{b}\)
Tính M= (\(\left(1+\frac{b}{a}\right).\left(1+\frac{a}{c}\right).\left(1+\frac{c}{b}\right)\)
1. Cho a,b,c,x,y,z khác 0 thỏa mãn:
\(\frac{7cy-5bz}{x}=\frac{2az-7cx}{y}=\frac{5bx-2ay}{z}\)
CMR: \(\frac{2a}{x}=\frac{5b}{y}=\frac{7c}{z}\)
2.Cho a,b,c,x,y,z khác 0 thỏa mãn: \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\)
CMR: \(\frac{x^2+y^2+z^2}{\left(ax+by+cz\right)^2}=\frac{1}{a^2+b^2+c^2}\)
3.Cho a,b,c thỏa mãn \(\frac{a}{2016}=\frac{b}{2017}=\frac{c}{2018}\)
CMR: 4(a-b)(b-c)=(a-c)2
4. Cho a,b,c thỏa mãn:\(\frac{a}{x}=\frac{b}{x+1}=\frac{c}{x+2}\)
CMR: 4(a-b)(b-c)=(a-c)2
5. Cho a,b,c thỏa mãn:
\(\frac{a}{-2017}=\frac{b}{-2016}=\frac{c}{-2015}\)
CMR: 4(a-b)(b-c)=(a-c)2
6. Cho a,b,c khác 0 và \(\frac{b+c+a}{a}=\frac{a+b-c}{b}=\frac{c+a-b}{c}\)
Tính giá trị biểu thức A=\(\frac{\left(a-b\right)\left(c+b\right)\left(c-a\right)}{abc}\)
Cho a;b;c đôi 1 khác nhau và \(\frac{a}{b-c}+\frac{b}{c-a}+\frac{c}{a-b}=0\)
CMR: \(\frac{a}{\left(b-c\right)^2}+\frac{b}{\left(c-a\right)^2}+\frac{c}{\left(a-b\right)^2}=0\)
( giải theo kiến thức lớp 7 nha!!!!)
cho 3 số đôi 1 khác nhau .CMR:
\(\frac{b-c}{\left(a-b\right)\left(a-c\right)}+\frac{c-a}{\left(b-c\right)\left(b-a\right)}+\frac{a-b}{\left(c-a\right)\left(c-b\right)}=\frac{2}{a-b}+\frac{2}{b-c}+\frac{2}{c-a}\)
1, Cho \(\frac{a}{b}=\frac{c}{d}\)( b,c,d khác 0; c+đ khác 0). CMR:
\(\frac{ab}{cd}=\frac{\left(a+b\right)^2}{\left(c+\text{d}\right)^2}\)
Cho \(\frac{1}{c}=\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}\right)\)(với a,b,c khác 0, b khác c). Chứng minh rằng \(\frac{a}{b}=\frac{a-c}{c-b}\)