bt em gửi cô Thương
1)\(ĐKXĐ\hept{\begin{cases}x\ne1\\x\ne3\end{cases}}\)
\(\frac{x+5}{x-1}=\frac{x+1}{x-3}-\frac{8}{x^2-4x+3}\)
\(\Leftrightarrow\frac{x+5}{x-1}-\frac{x+1}{x-3}+\frac{8}{x^2-4x+3}=0\)
\(\Leftrightarrow\frac{x+5}{x-1}-\frac{x+1}{x-3}+\frac{8}{x^2-x-3x+3}=0\)
\(\Leftrightarrow\frac{\left(x+5\right)\left(x-3\right)}{\left(x-1\right)\left(x-3\right)}-\frac{\left(x+1\right)\left(x-1\right)}{\left(x-3\right)\left(x-1\right)}+\frac{8}{x\left(x-1\right)-3\left(x-1\right)}=0\)
\(\Leftrightarrow\frac{x^2+2x-15}{\left(x-1\right)\left(x-3\right)}-\frac{x^2-1}{\left(x-3\right)\left(x-1\right)}+\frac{8}{\left(x-1\right)\left(x-3\right)}=0\)
\(\Leftrightarrow\frac{2x-6}{\left(x-1\right)\left(x-3\right)}=0\)
\(\Leftrightarrow2x-6=0\)
\(\Leftrightarrow x=3\)( tm)
Vậy nghiemj của pt x=3
2)\(x^3-x^2-9x+9=0\)
\(\Leftrightarrow x^2\left(x-1\right)-9\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^2-9\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-3\right)\left(x+3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\x-3=0\end{cases}}\)hoặc x+3=0
\(\Leftrightarrow\orbr{\begin{cases}x=1\\x=3\end{cases}}\)hoặc x=-3
Vậy tập hợp nghiệm \(S=\left\{1;3;-3\right\}\)
giải phương trình
\(a,\left(x+1\right)^2=4\left(x^2-2x+1\right)^2\)
\(b,\left(x^2-9\right)^2-9\left(x-3\right)^2=0\)
\(c,9\left(x-3\right)^2=4\left(x+2\right)^2\)
\(d,\left(2x+7\right)^2=9\left(x+2\right)^2\)
\(e,4\left(2x+7\right)^2=9\left(x+3\right)^2\)
\(f,\left(5x^2-2x+10\right)^2=\left(3x^2+10x-8\right)^2\)
\(g,\frac{1}{9}\left(x-3\right)^2-\frac{1}{25}\left(x+5\right)^2=0\)
Giải các phương trình:
1.\(x^2+\frac{9x^2}{\left(x+3\right)^2}=27\)
\(2.\left(\frac{x-1}{x}\right)^2+\left(\frac{x-1}{x-2}\right)^2=\frac{40}{9}\)
\(3.\left(x^2+\frac{1}{x^2}\right)+5\left(x^2+\frac{1}{2}\right)-12=0\)
\(A\frac{2\left(x-3\right)}{3}+\frac{x-5}{3}=\frac{13x+4}{21}\) \(B\frac{3x-1}{2}-\left(x-\frac{1}{4}\right)=\frac{4x-9}{8}\) \(C\frac{\left(x+2\right)^2}{8}-2\left(2x+1\right)=25+\frac{\left(x-2\right)^2}{8}\) giải dùm nhá mấy bạn
Giải phương trình:
1.\(\frac{x-5}{x-5}+\frac{x-6}{x-5}+\frac{x-7}{x-5}+...+\frac{1}{x-5}=4\left(x\in N\right)\)
2.\(\frac{1}{x^2+3x+2}+\frac{1}{x^2+5x+6}+\frac{1}{x^2+7x+12}+...+\frac{1}{x^2+15x+56}=\frac{1}{14}\)
3.\(\left(1+\frac{1}{1.3}\right)\left(1+\frac{1}{2.4}\right)\left(1+\frac{1}{3.5}\right)...\left(1+\frac{1}{x\left(x+2\right)}\right)=\frac{31}{16}\left(x\in N\right)\)
4.\(8\left(x^2+\frac{1}{x^2}\right)-34\left(x+\frac{1}{x}\right)+51=0\)
5.\(6x^4-5x^3-38x^2-5x+6=0\)
1. \(\frac{7}{8}x-5\left(x-9\right)=\frac{20x+1,5}{6}\)
2 . \(\frac{\left(2x+1\right)^2}{5}-\frac{\left(x+1\right)^2}{3}=\frac{7x^2-14x-5}{15}\)
3 . \(4\left(3x-2\right)-3\left(x-4\right)=7x+10\)
4. \(\frac{\left(x+10\right)\left(x+4\right)}{12}-\frac{\left(x+4\right)\left(2-x\right)}{4}=\frac{\left(x+10\right)\left(x-2\right)}{3}\)
Bài 1: Giải các phương trình:
\(a)\left(x-5\right)^2+\left(x^2-25\right)=0\)
\(b)\frac{x-2}{4}+\frac{2x-3}{3}=\frac{x-18}{6}\)
\(c)\frac{1}{x-3}+\frac{x-3}{x+3}=\frac{5x-6}{x^2-9}\)
Cho x và y là hai số khác 0 và thỏa mãn x+y khác 0. Chứng minh rằng:
\(\frac{1}{\left(x+y\right)^3}\left(\frac{1}{x^3}+\frac{1}{y^3}\right)+\frac{3}{\left(x+y\right)^4}\left(\frac{1}{x^2}+\frac{1}{y^2}\right)+\frac{6}{\left(x+y\right)^5}\left(\frac{1}{x}+\frac{1}{y}\right)=\frac{1}{x^3y^3}\)
Giải các phương trình sau bằng cách đưa về dạng ax + b = 0:
\(a,\frac{x-23}{24}+\frac{x-23}{25}=\frac{x-23}{26}+\frac{x-23}{27}\)
\(b,\left(\frac{x+2}{98}+1\right)+\left(\frac{x+3}{97}+1\right)=\left(\frac{x+4}{96}+1\right)+\left(\frac{x+5}{95}+1\right)\)