\(\frac{1}{40\times41}+\frac{1}{41\times42}+\frac{1}{42\times43}+\frac{1}{43\times44}\)
\(=\frac{1}{40}-\frac{1}{41}+\frac{1}{41}-\frac{1}{42}+\frac{1}{42}-\frac{1}{43}+\frac{1}{43}-\frac{1}{44}\)
\(=\frac{1}{40}-\frac{1}{44}=\frac{1}{440}\)
\(\frac{1}{40\times41}+\frac{1}{41\times42}+\frac{1}{42\times43}+\frac{1}{43\times44}\)
\(=\frac{1}{40}-\frac{1}{41}+\frac{1}{41}-\frac{1}{42}+\frac{1}{42}-\frac{1}{43}+\frac{1}{43}-\frac{1}{44}\)
\(=\frac{1}{40}-\frac{1}{44}=\frac{1}{440}\)
Cho
A= \(\frac{4}{31\times7}+\frac{6}{7\times41}+\frac{9}{10\times41}+\frac{7}{10\times57}\)
B= \(\frac{7}{19\times31}+\frac{5}{19\times43}+\frac{3}{13\times43}+\frac{11}{23\times57}\)
Tính \(\frac{A}{B}\)
LM ƠN GIÚP TỚ NHÉ, TỚ CẦN GẤP LẮM, TỚ SẼ TIK CHO!!!!!!!
chứng tỏ rằng :\(\frac{1}{8}+\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+\frac{1}{41}+\frac{1}{42}+\frac{1}{43}< \frac{1}{2}\)
Chứng tỏ rằng: \(\frac{1}{41}+\frac{1}{42}+\frac{1}{43}+...+\frac{1}{79}+\frac{1}{80}>\frac{7}{12}\)
CHỨNG TỎ
\(\frac{1}{41}+\frac{1}{42}+\frac{1}{43}+......+\frac{1}{99}+\frac{1}{100}>\frac{7}{10}\)
Cm: \(\frac{1}{41}+\frac{1}{42}+\frac{1}{43}+...+\frac{1}{79}+\frac{1}{80}>\frac{7}{12}\)
CMR: \(\frac{1}{41}+\frac{1}{42}+\frac{1}{43}+...+\frac{1}{80}>\frac{ }{ }\)7/12
Chứng tỏ rằng :\(y=\frac{1}{41}+\frac{1}{42}+\frac{1}{43}+...+\frac{1}{79}+\frac{1}{80}>\frac{7}{12}\)
Chứng minh rằng :\(\frac{1}{41}+\frac{1}{42}+\frac{1}{43}+...+\frac{1}{79}+\frac{1}{80}>\frac{7}{12}\)
CM::
\(\frac{1}{41}+\frac{1}{42}+\frac{1}{43}+\frac{1}{44}+............+\frac{1}{79}+\frac{1}{80}>\frac{7}{12}\)