1.
= \(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+.............+\frac{1}{99.101}\)
= \(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+.......+\frac{1}{99}-\frac{1}{101}\)
= 1 - \(\frac{1}{101}\)
= \(\frac{100}{101}\)
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
1.
= \(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+.............+\frac{1}{99.101}\)
= \(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+.......+\frac{1}{99}-\frac{1}{101}\)
= 1 - \(\frac{1}{101}\)
= \(\frac{100}{101}\)
\(\frac{1}{2\times3}+\frac{1}{3\times4}+\frac{1}{4\times5}+\frac{1}{5\times6}+\frac{1}{6\times7}+\frac{1}{7\times8}+\frac{1}{8\times9}+\frac{1}{9\times10}\)
a) \(5\frac{8}{17}\div x+\frac{-1}{17}\div x+3\frac{1}{17}\div17\frac{1}{3}=\frac{4}{17}\)
b)\(\frac{1}{1\times4}+\frac{1}{4\times7}+\frac{1}{7\times10}+...+\frac{1}{x\times\left(x+3\right)}=\frac{6}{19}\)
B = \(\frac{59}{10}:\frac{3}{2}-\left(\frac{7}{3}\times\frac{17}{4}-2\times\frac{4}{3}\right)\div\frac{7}{4}\)
C = \(\frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+\frac{1}{4\times5}+\frac{1}{5\times6}+\frac{1}{6\times7}\)
Có thánh nào giỏi toán ko vào đây giúp tớ bài này vs help me huhuhuhuhuhu
A=\(\frac{-3}{5}+\left(\frac{-2}{5}+2\right)\)
\(B=\left(6-2\frac{4}{5}\right)\times3\frac{1}{8}-1\frac{3}{5}=\frac{1}{4}\)
Tính nhanh
\(A=\frac{5}{1\times7}+\frac{5}{4\times7}+\frac{5}{7\times10}+......+\frac{5}{101\times104}\)
\(\frac{1}{3}+\frac{1}{5}+\frac{1}{35}+...+\frac{1}{9999}\)
tìm x
\(\frac{1}{1\times4}+\frac{1}{4\times7}+\frac{1}{7\times10}+...+\frac{1}{x\left(x+3\right)}=\frac{6}{19}\)
Chứng minh rằng :\(\frac{1}{1\times2}+\frac{1}{3\times4}+\frac{1}{5\times6}+...+\frac{1}{99\times100}=\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+...+\frac{1}{100}\)
\(\frac{1}{3\times5}+\frac{1}{5\times7}+\frac{1}{7\times9}+...+\frac{1}{\left(2x+1\right)\left(2x+3\right)}=\frac{15}{96}\)
Chứng tỏ rằng:C=\(\frac{1}{2}.\frac{3}{4}.\frac{5}{6}.....\frac{9999}{10000}< \frac{1}{100}\)