Đặt tổng trên là A
Ta có: 2A=\(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{n-1}}\)
2A-A=A=\(\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{n^{n-1}}\right)-\left(\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^n}\right)\)
A=\(\frac{1}{2}-\frac{1}{2^n}\)
Vậy A<1 (đpcm)