\(\frac{1+2018.2019}{2017.2019+2020}\)
\(=\frac{2018.2019-2019+2020}{2017.2019+2020}\)
\(=\frac{2019.\left(2018-1\right)+2020}{2017.2019+2020}\)
\(=\frac{2017.2019+2020}{2017.2019+2020}\)
\(=1\\ \)
\(\frac{1+2018.2019}{2017.2019+2020}=\frac{1+2019+2017.2019}{2017.2019+2020}\)
\(=\frac{2020+2017.2019}{2017.2019+2020}=1\)
Vậy : \(\frac{1+2018.2019}{2017.2019+2020}=1\)
\(\frac{1+2018\cdot2019}{2017\cdot2019+2020}=\frac{1+2019+2017\cdot2019}{2017\cdot2019+2020}\)\(=\frac{2020+2017\cdot2019}{2017\cdot2019+2020}=1\)
Vậy \(\frac{1+2018\cdot2019}{2017\cdot2019+2020}=1\)