\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)
\(A=1-\frac{1}{100}=\frac{99}{100}\)
k cho mình nha bạn
=1-1/2+1/2-1/3+1/3-1/4+...+1/99-1/100
=1-1/100=99/100
= \(1-\left(\frac{1}{2}-\frac{1}{2}+\frac{1}{3}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{99}+\frac{1}{100}\right)\)
= \(1-\frac{1}{100}=\frac{99}{100}\)
\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
=>\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
=>\(1-\frac{1}{100}=\frac{99}{100}\)
= 1/1 -1/2 +1/2 -1/3 +1/3 -1/4 +....+1/99 -1/100
=1/1-1/100
=100/100-1/100
=99/100