\(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)
\(=1-\frac{1}{100}=\frac{99}{100}\)(Nhớ k cho mình với nhá!)
\(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)
\(=1-\frac{1}{100}=\frac{99}{100}\)(Nhớ k cho mình với nhá!)
\(\frac{1}{1\times2}+\frac{1}{2\times3}+...+\frac{1}{99\times100}\)
\(\frac{1}{1\times2}+\frac{1}{2\times3}+...+\frac{1}{99\times100}\)
Tinh gia tri bieu thuc: A=\(\frac{1}{1\times2}+\frac{1}{2\times3}+...+\frac{1}{99\times100}\)
Tinh gia tri bieu thuc: A = \(\frac{1}{1\times2}+\frac{1}{2\times3}+...+\frac{1}{99\times100}\)
Tinh gia tri bieu thuc: A =\(\frac{1}{1\times2}+\frac{1}{2\times3}+...+\frac{1}{99\times100}\)
Tinh gia tri bieu thuc A = \(\frac{1}{1\times2}+\frac{1}{2\times3}+...+\frac{1}{99\times100}\)
Tinh gia tri bieu thuc A = \(\frac{1}{1\times2}+\frac{1}{2\times3}+...\frac{1}{99\times100}\)
Tinh gia tri bieu thuc A = \(\frac{1}{1\times2}+\frac{1}{2\times3}+...+\frac{1}{99\times100}\)
\(12\div\frac{1}{4}=?\times3\)
\(\frac{1}{2}\times10+8+6=?\)
\(50+\frac{1}{2}\times5=?\)