\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+...+\frac{1}{99.101}\)
Đặt A = \(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+...+\frac{1}{99.101}\)
\(2A=\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{99}-\frac{1}{101}\)
\(2A=\frac{1}{1}-\frac{1}{101}\)
\(2A=\frac{100}{101}\)
\(\Rightarrow A=\frac{100}{101}\div2\)
\(\Rightarrow A=\frac{50}{101}\)
sửa đề
\(\frac{1}{1\cdot3}+\frac{1}{3\cdot5}+\frac{1}{5\cdot7}+.......+\frac{1}{99\cdot101}\)
\(=\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+.....+\frac{1}{99}-\frac{1}{101}\right)\)
\(=\frac{1}{2}\left(1-\frac{1}{101}\right)\)
\(=\frac{1}{2}\cdot\frac{100}{101}=\frac{50}{101}\)