\(\frac{1}{1+2}+\frac{1}{1+2+3}+\frac{1}{1+2+3+4}+...+\frac{1}{1+2+3+4+...+15}\)
\(=\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{1}{220}\)
\(=\frac{2}{2.3}+\frac{2}{3.4}+\frac{2}{4.5}+...+\frac{2}{15.16}\)
\(=2\cdot\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{15}-\frac{1}{16}\right)\)
\(=2\cdot\left(\frac{1}{2}-\frac{1}{16}\right)=2\cdot\frac{7}{16}=\frac{7}{8}\)