Tính
\(\frac{1}{2}-\frac{1}{3}-\frac{2}{3}+\frac{1}{4}-\frac{2}{4}+\frac{3}{4}+...+\frac{1}{10}+\frac{2}{10}+...+\frac{9}{10}\)
Bài 3 : a) Tính
\(\frac{\left(13\frac{1}{4}-2\frac{5}{27}-10\frac{5}{6}\right)\cdot230\frac{1}{25}+46\frac{3}{4}}{\left(1\frac{3}{10}+\frac{10}{3}\right):\left(12\frac{1}{3}-14\frac{2}{7}\right)}\)
b) Tính :
\(P=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2012}}{\frac{2011}{1}+\frac{2010}{2}+\frac{2009}{3}+\frac{1}{2011}}\)
Tính hợp lý các tổng và tích sau:
1) \(1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{100}}\)
2) \(\frac{10}{56}+\frac{10}{140}+\frac{10}{260}+...+\frac{10}{1400}\)
3) \(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}+...+\frac{1}{3^{300}}\)
Tính hợp lí :\(\orbr{\begin{cases}\\\end{cases}9-\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{10}\right):\left(\frac{1}{2}+\frac{2}{3}+\frac{3}{4}+...+\frac{9}{10}\right)}\)
\(\frac{\left(13\frac{1}{4}-2\frac{5}{27}-10\frac{5}{6}\right).230\frac{1}{5}+46\frac{3}{4}}{\left(1\frac{3}{10}+\frac{10}{3}\right):\left(12\frac{1}{3}-14\frac{2}{7}\right)}\)
A=\(\left(1-\frac{1}{2}\right)\cdot\left(1-\frac{1}{3}\right)\cdot\left(1-\frac{1}{4}\right)........\left(1-\frac{1}{2004}\right)\)
\(B=5\frac{9}{10}:\frac{3}{2}-\left(2\frac{1}{3}\cdot4\frac{1}{2}-2\cdot2\frac{1}{3}\right):\frac{7}{4}\)
1, \(\frac{2}{9}.\left(x-\frac{9}{4}\right)+\frac{1}{2}=\frac{3}{7}.\left(7-\frac{1}{6}\right)+\frac{1}{3}\)
2, \(2.\left(\frac{3}{2}-x\right)-\frac{1}{3}=7x-\frac{1}{4}\)
3,\(-\frac{3}{2}.\left(5-\frac{1}{6}\right)+4.\left(x-\frac{1}{2}\right)=\frac{1}{2}+x\)
4,\(-\frac{5}{7}.\left(\frac{2}{5}-x\right)-\frac{1}{3}=\frac{1}{5}-\frac{3}{10}\)
5,\(4-\frac{2}{3}.\left(x-3\right)=2-\frac{1}{2}+\frac{2}{3}\)
6,\(\frac{2}{3}-\frac{5}{3}.x=\frac{7}{10}.x+\frac{5}{6}\)
7,\(3.\left(x-\frac{5}{3}\right)+\frac{1}{2}=2\left(x-\frac{1}{4}\right)+\frac{5}{2}\)
Phần nào có bn giải rầu các men đừng giải lại nha mk sẽ ko tk đâu chỉ tik những phần chưa lm
a)\(\frac{1}{10^2}+\frac{1}{11^2}+\frac{1}{12^2}+...+\frac{1}{100^2}<\frac{3}{4}\)
b)\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}<\frac{99}{100}\)
c)\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}<\frac{3}{4}\)
\(A=\frac{\left(13\frac{1}{4}-2\frac{5}{27}-10\frac{5}{6}\right).230\frac{1}{25}+46\frac{3}{4}}{\left(1\frac{3}{10}+\frac{10}{3}\right):\left(12\frac{1}{3}-14\frac{2}{7}\right)}\)
a,A=\(2\frac{1}{2}:\left(\frac{-1}{2}\right)^2-\frac{1}{-3}.\left(\frac{-1}{2}-\frac{4}{3}:\frac{-8}{9}\right)\)
b,B=\(\left(3\frac{10}{99}+4\frac{11}{99}-\frac{58}{299}\right).\left(\frac{1}{2}-\frac{4}{3}-\frac{1}{6}\right)\)