\(\frac{\left(1+\frac{2012}{1}\right)\left(1+\frac{2012}{2}\right).......\left(1+\frac{2012}{100}\right)}{\left(1+\frac{1000}{1}\right)\left(1+\frac{1000}{2}\right).....\left(1+\frac{1000}{2012}\right)}\)
So sánh A=\(\frac{1000^{2012}+2}{1000^{2012}-1}\) và B= \(\frac{1000^{2012}}{1000^{2012}-3}\)
Rút gọn :
a/ \(A=\frac{\frac{1}{19}+\frac{2}{18}+\frac{3}{17}+...+\frac{19}{1}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{20}}\)
b/ \(B=\frac{\left(1+\frac{2012}{1}\right)\left(1+\frac{2012}{2}\right)...\left(1+\frac{2012}{1000}\right)}{\left(1+\frac{1000}{1}\right)\left(1+\frac{1000}{2}\right)...\left(1+\frac{1000}{2012}\right)}\)
Tinh [(1+2012/1)*(1+2012/2)*(1+2012/3)*...*(1+2012/1000)]/[(1+1000/1)*(1+1000/2)*(1+1000/3)*...*(1+1000/2012)]
tính B=[(1+2012/1)+(1+2012/2)+(1+2012/3)+...+(1+2012/1000)]:[(1+1000/1)+(1+1000/2)+...+(1+1000/2012)]
Câu 1
Cho A= (1+2012/1)(1+2012/2)...(1+2012/1000)
B=(1+1000/1)(1+1000/2).....(1+1000/2012)
Tính \(\frac{A}{B}\)
Câu 2
cho E = 1/1.2 + 1/3.4 +1/5.6 +....+1/2013.2014
F= 1/1008.2014 + 1/1009,2013 +....+1/2014.1008
Tính \(\frac{E}{F}\)
(1+2012/1)(1+2012/2)(1+2012/3).......(1+2012/1000)
(1+1000/1)(1+1000/2)..........(1+1000/2012)
Tính A
Tính:
(1 + 2012/1)(1 + 2012/2)....(1 + 2012/1000)
(1 + 1000/1)(1 + 1000/2)....(1 + 1000/2012)
(1+2012/1)(1+2012/2)(1+2012/3).......(1+2012/1000)
(1+1000/1)(1+1000/2)..........(1+1000/2012)
Đề bài là rút gọn, giúp mình với