Đặt \(\frac{1}{2.4}+\frac{1}{4.6}+\frac{1}{6.8}+....+\frac{1}{98.100}=A\)
<=> \(A=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+....+\frac{1}{98}-\frac{1}{100}\right)\)
<=> \(A=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{100}\right)\)
<=> \(A=\frac{1}{2}.\frac{49}{100}=\frac{49}{200}\)
lúc đó \(\frac{A}{Y}=\frac{147}{50}\)<=> \(Y=\frac{49}{200}.\frac{50}{147}=\frac{1}{12}\)