\(\frac{1}{n\left(n+2\right)}=\frac{A}{n+2}+\frac{B}{n}\)
\(\frac{1}{n\left(n+2\right)}=\frac{An+B\left(n+2\right)}{n\left(n+2\right)}\)
\(\Rightarrow An+Bn+2B=1\)
\(A+B=\frac{1-2B}{n}\)
\(\frac{1}{n\left(n+2\right)}=\frac{A}{n+2}+\frac{B}{n}\)
\(\frac{1}{n\left(n+2\right)}=\frac{An+B\left(n+2\right)}{n\left(n+2\right)}\)
\(\Rightarrow An+Bn+2B=1\)
\(A+B=\frac{1-2B}{n}\)
Find the sum A+B such that \(\frac{1}{n\left(n+2\right)}=\frac{A}{n+2}+\frac{B}{n}\)
Answer: A+B = ........
Find the sum A+B such that \(\frac{1}{n\left(n+2\right)}=\frac{A}{n+2}+\frac{B}{n}\)
Answer: A+B = ........
Find the sum A+B such that \(\frac{1}{n\left(n+2\right)}=\frac{A}{n+2}+\frac{B}{n}\)
Answer: A+B = ........
Find the sum A+B such that \(\frac{1}{n\left(n+2\right)}=\frac{A}{n+2}+\frac{B}{n}\)
1.Cho \(n\inℕ^∗\)và a,b dương , chứng minh:
\(\frac{1}{a^n}+\frac{1}{b^n}\ge\frac{2^{n+1}}{\left(a+b\right)^n}\)
2.Cho m,n dương , chứng minh:
\(\frac{a^2}{m}+\frac{b^2}{n}\ge\frac{\left(a+b\right)^2}{m+n}\)
3.Cho m,n,p là các số dương, chứng minh:
\(\frac{a^2}{m}+\frac{b^2}{n}+\frac{c^2}{p}\ge\frac{\left(a+b+c\right)^2}{m+n+p}\)
Giúp mình với mn ơi!!
Let a;b;c be positive real numbers such that \(a^2+b^2+c^2=\frac{1}{3}\). Prove that :
\(4\left(a+b+c\right)+\frac{2}{3}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge10\)
\(A=\left(1-\frac{1}{1+2}\right)\left(1-\frac{1}{1+2+3}\right)\left(1-\frac{1}{1+2+3+4}\right)...\left(1-\frac{1}{1+2+3+4+...+N}\right) \)) là tích của n-1 thừa số và biểu thức B=\(\frac{n+2}{n}\) . Tính \(\frac{A}{B}\)
B1 Tính
\(\frac{x^3+125}{3x-9}.\frac{3-x}{x^2-5x+25}\)
B2 : Cho abc = 1. Tính M-N
\(M=\left(a+\frac{1}{a}\right)^2\left(b+\frac{1}{b}\right)^2+\left(c+\frac{1}{c}\right)2\)
\(N=\left(a+\frac{1}{a}\right)\left(b+\frac{1}{b}\right)\left(c+\frac{1}{c}\right)\)
1)Chứng minh rằng nếu n là số tự nhiên sao cho n+1 và 2n+1 đều là các số chính phương thì n là bội của 24
2) CMR nếu:
\(\frac{bz+cy}{x\left(-ax+by+cz\right)}=\frac{cx+az}{y\left(ax-by+cz\right)}=\frac{ay+bx}{z\left(ax+by-cz\right)}\left(1\right)\)
thì \(\frac{x}{a\left(b^2+c^2-a^2\right)}=\frac{y}{b\left(c^2+a^2-b^2\right)}=\frac{z}{c\left(a^2+b^2-c^2\right)}\)
3) Cho độ dài ba cạnh a,b,c của một tam giác. CMR:
\(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)+3\frac{\left(a-b\right)\left(b-c\right)\left(c-a\right)}{abc}\ge9\)