D = 1 . 2 + 2 . 3 + 3 . 4 + 4 . 5 + .... + 99 . 100 + 100 . 101
3D=1 . 2 . 3 + 2 . 3 . ( 4 - 1 ) + 3 . 4 . ( 5 - 2 )+ 4 . 5 + ( 6 - 3) + .... + 99. 100 . ( 101 - 98 ) + 100 . 101 . ( 102 - 99 )
3D=1 . 2 . 3+2 . 3 . 4-1 . 2 . 3 + 3 . 4 . 5 - 2 . 3 . 4 + 4 . 5 . 6 - 3 . 4 . 5 + ..... + 99 . 100 . 101- 98 . 99 . 100 +100 . 101 . 102-99.100.101
3D = 100 . 101 . 102
D = \(\frac{100.101.102}{3}=343400\)
E = \(2+2^3+2^5+2^7+...+2^{2017}+2^{2019}\)
4E = \(2^3+2^5+2^7+2^9...+2^{2019}+2^{2021}\)
=> 4E - E = \(2^3+2^5+2^7+2^9...+2^{2019}+2^{2021}\)- ( \(2+2^3+2^5+2^7+...+2^{2017}+2^{2019}\))
=> 3E = \(2^{2021}-2\)
=> E = \(\frac{2^{2021}-2}{3}\)