cho k thuộc N* chứng tỏ rằng 2k + 1 và 9k + 4 là hai số nguyên tố cùng nhau
cho k thuộc N* chứng tỏ rằng 2k + 1 và 9k + 4 là hai số nguyên tố cùng nhau
cho k thuộc N* ,chứng tỏ rằng 2k+1 và 9k+4 là 2 số nguyên tố cùng nhau
Chứng minh 2k +1 và 2k + 3 nguyên tố cùng nhau. với k là số tự nhiên.
Chứng tỏ 2k+1 và 9k+4 là 2 số nguyên tố cùng nhau Bt UCLN (a,b) = 25
Chứng minh rằng:
a) 2n+1và 6n+5 là hai số nguyên tố cùng nhau
b) 2n+1và 2n+3 là hai số nguyên tố cùng nhau
Chứng tỏ rằng với n thuộc N thì các số sau là các số nguyên tố cùng nhau
a) n và n + 1
b) n + 1 và 3n+4
c) 2n+1và 3n + 2
Cho a và b là 2 số tự nhiên liên tiếp (a<b). Chứng minh a và b nguyên tố cùng nhau.
Giải:
Vì a và b là 2 số tự nhiên liên tiếp
=> a.b chia hết cho 2
Vì b>a => a có dạng 2k, b có dạng 2k+1 (k thuộc N*)
=> a.b có dạng 2k.(2k+1)
Gọi ƯCLN(2k;2k+1) = d (d thuộc N*)
=> 2k chia hết cho d ; 2k+1 chia hết cho d
=> (2k+1)-2k chia hết cho d
=> 2k+1-2k chia hết cho d
=> 1 chia hết cho d
=> d=1
=> ƯCLN(a;b)=1
=> a và b là 2 số nguyên tố cùng nhau.
Mình giải như vây có đúng không?
Chứng minh rằng nếu 3 số a , a+k , a+2k đều là các số nguyên tố lớn hơn 3 thì k chia hết cho 6 ???