\(E=\frac{3^2}{8.11}+\frac{3^2}{11.14}+\frac{3^2}{14.17}+...+\frac{3^2}{197.200}\)
\(=\frac{9}{8.11}+\frac{9}{11.14}+\frac{9}{14.17}+...+\frac{9}{197.200}\)
\(\Rightarrow\frac{1}{3}.E=\frac{3}{8.11}+\frac{3}{11.14}+\frac{3}{14.17}+...+\frac{3}{197.200}\)
\(=\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+\frac{1}{14}-\frac{1}{17}+...+\frac{1}{197}-\frac{1}{200}\)
\(=\frac{1}{8}-\frac{1}{200}=\frac{3}{25}\)
\(\Rightarrow E=\frac{3}{25}\div\frac{1}{3}=\frac{9}{25}\)