a) ∀ x ∈ R: x.1 = x
b) ∃ a ∈ R: a + a = 0
c) ∀ x ∈ R: x + (-x) = 0
a) ∀ x ∈ R: x.1 = x
b) ∃ a ∈ R: a + a = 0
c) ∀ x ∈ R: x + (-x) = 0
Dùng kí hiệu ∀ hoặc ∃ để viết các mệnh đề sau
Mọi số (thực) cộng với 0 đều bằng chính nó ;
Dùng kí hiệu ∀ và ∃ để viết mệnh đề sau rồi lập mệnh đề phủ định và xét tính đúng sai của mệnh đề đó.
Mọi số thực cộng với số đối của nó đều bằng 0.
Dùng kí hiệu ∀ và ∃ để viết mệnh đề sau rồi lập mệnh đề phủ định và xét tính đúng sai của mệnh đề đó.
Mọi số thực khác 0 nhân với nghịch đảo của nó đều bằng 1
Dùng các kí hiệu để viết lại mệnh đề sau và viết mệnh đề phủ định của nó: Q: “Với mọi số thực thì bình phương của nó là một số không âm”
A. Q: ∀ x ∈ R , x 2 ≥ 0 mệnh đề phủ định là Q : ∀ x ∈ R , x 2 < 0
B. Q: ∃ x ∈ R , x 2 ≥ 0 mệnh đề phủ định là : Q : ∃ x ∈ R , x 2 < 0
C. Q: ∀x ∈ R, x2 ≥ 0 mệnh đề phủ định là Q : ∃ x ∈ R , x 2 < 0
D. Q: x ∈ R, x2 ≥ 0 mệnh đề phủ định là Q : ∀ x ∈ R , x 2 < 0
Dùng kí hiệu ∀ và ∃ để viết mệnh đề sau rồi lập mệnh đề phủ định và xét tính đúng sai của mệnh đề đó.
Có một số thực bằng số đối của nó.
Dùng kí hiệu ∀ hoặc ∃ để viết các mệnh đề sau
Có một số nguyên bằng bình phương của nó ;
Dùng kí hiệu ∀ hoặc ∃ để viết các mệnh đề sau
Mọi số tự nhiên đều lớn hơn 0.
Dùng kí hiệu ∀ hoặc ∃ để viết các mệnh đề sau
Có một số hữu tỉ nhỏ hơn nghịch đảo của nó;
Có một số mọi số thuộc số nguyên sao cho số đó nhỏ hơn 0 mọi số thuộc số thực sao cho số đó nhỏ hơn chính nó và cộng 1