Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Pham Trong Bach

Dựng hình thang ABCD, biết hai đáy AB = 2cm, CD = 4cm, ∠ D = 70 0 ,  ∠ C = 50 0

Cao Minh Tâm
2 tháng 3 2018 lúc 11:22

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Phân tích:

Giả sử hình thang ABCD dựng được thỏa mãn điều kiện bài toán. Qua A kẻ đường thẳng song song với BC cắt CD tại E. Hình thang ABCE có 2 cạnh bên song song nên AB = EC = 2cm do đó DE = 2cm

Tam giác ADE dựng được vì biết 2 góc kề với một cạnh.

Điểm C nằm trên tia DE cách D một khoảng bằng 4cm.

Điểm B thỏa mãn hai điều kiện:

- B nằm trên đường thẳng đi qua A và song song với CD.

- B nằm trên đường thẳng đi qua C và song song với AE.

Cách dựng:

- Dựng ΔADE biết DE = 2cm,  ∠ D =  70 0 , E =  50 0

- Trên tia DE lấy điểm C sao cho DC = 4cm

- Dựng tia Ax // CD, Ax nằm trên nửa mặt phẳng bờ AD chứa điểm C

- Dựng tia Cy // AE, Cy nằm trên nửa mặt phẳng bờ CD chứa điểm A.

Cy cắt Ax tại B. Hình thang ABCD cần dựng.

Chứng minh:

Tứ giác ABCD là hình thang vì AB // CD.

CD = CE + ED ⇒ CE = CD – ED = 4 – 2 = 2 (cm)

Hình thang ABCE có hai cạnh bên AE // CB

⇒ AB = CE = 2 (cm)

∠ C =  ∠ E =  50 0 (hai góc đồng vị)

∠ D =  70 0

Hình thang ABCD thỏa mãn điều kiện bài toán.

Biện luận: Tam giác ADE luôn dựng được, hình thang ABCD luôn dựng được. Ta dựng được một hình thang thỏa mãn điều kiện bài toán.


Các câu hỏi tương tự
Võ Nguyễn Thương Thương
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Trần Vũ Duy
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Bảo Thiii
Xem chi tiết
Bảo Thiii
Xem chi tiết
huynh nguyen thuy linh
Xem chi tiết
Hạ Băng Hoàng
Xem chi tiết
Pham Trong Bach
Xem chi tiết