\(\frac{1}{x-y}.\sqrt{x^4\left(x^2+y^2-2xy\right)}\)
\(=\frac{1}{x-y}.\sqrt{\left(x^2\right)^2.\left(x-y\right)^2}\)
\(=\frac{1}{x-y}\left(x-y\right)x^2\)
\(=x^2\)
\(\frac{1}{x-y}.\sqrt{x^4\left(x^2+y^2-2xy\right)}\)
\(=\frac{1}{x-y}.\sqrt{\left(x^2\right)^2.\left(x-y\right)^2}\)
\(=\frac{1}{x-y}\left(x-y\right)x^2\)
\(=x^2\)
đưa thừa số ra ngoài dấu căn
\(\frac{2xy^2}{3ab}\sqrt{\frac{9a^3b^4}{8xy^3}}\)với a,b,x,y>0
Đưa thừa số ra ngoài dấu căn
a) \(\sqrt{25.96}\)
b) \(\sqrt{21.75.14}\)
c) \(y^2.\sqrt{x^6.y^8}\)
d) \(a^3.\sqrt{a^5.\left(a-3\right)^2}\)
e)\(\left(x-6\right).\sqrt{\frac{x}{36-x^2}}\)
\(\sqrt{48.45}\) Đưa thừa số ra ngoài dấu căn:
\(\sqrt{225.17}\)
\(\sqrt{a^3b^7}với\) \(a\ge0;b\ge0\)
\(\sqrt{x^5\left(x-3\right)^2}\) với \(x>0\)
1. Chứng minh rằng: \(\frac{2x^2+1}{\sqrt{4x^2+1}}\ge1\)
2. Tìm GTLN: A=\(\frac{1}{x-\sqrt{x}+1}\left(x>0\right)\)
3. Đưa thừa số ra ngoài dấu căn
B= \(\frac{1}{2x-1}\sqrt{5\left(1-4x+4x^2\right)}\)
đưa thừa số ra ngoài dấu căn
a) √128(x-y)^2
b) √150(4x^2-4x+1)
c) √x^3-6x^2+12x-8
a/ đưa các thừa số ra ngoài dấu căn :
1/\(\sqrt{27x^2}(x>0)\)
2/\(\sqrt{8xy^2}(x\ge0;y\le0)\)
b/ đưa thừa số vào trong dấu căn :
1/\(x\sqrt{13}(x\ge0)\)
2/\(x\sqrt{-15x}(x< 0)\)
3/\(x\sqrt{2}(x\le0)\)
Giải hệ phương trình: \(\hept{\begin{cases}\frac{7}{2}+\frac{3y}{x+y}=\sqrt{x}+4\sqrt{y}\\\left(x^2+y^2\right)\left(x+1\right)=4+2xy\left(x-1\right)\end{cases}}\)
Bài 1 . Đưa thừa số ra ngoài dấu căn a, 3√x² b, -5√y⁴ c, 3√5x d, x√7 với x lớn hơn hoặc bằng 0
Đưa thừa số ra ngoài dấu căn
a)\(3\sqrt{7}\) b)\(-4\sqrt{3}\) c)\(x\sqrt{3}\left(x>0\right)\) d)\(x\sqrt{2}\left(x>0\right)\) e)\(x\sqrt{\frac{7}{x}}\left(x>0\right)\)
GIÚP MIK ĐI MIK DAG CẦN GẤP VÀO NGÀY MAI HUHU