Đơn giản biểu thức: \(A=\dfrac{a^3-3a+\left(a^2-1\right)\sqrt{a^2-4}-2}{a^3-3a+\left(a^2-1\right)\sqrt{a^2-4}+2}\)
Với a>=2, rút gọn:
M=\(\dfrac{a^3-3a+\left(a^2-1\right)\sqrt{a^2-4}-2}{a^3-3a+\left(a^2-1\right)\sqrt{a^2-4}+2}\)
Rút gọn:
\(P=\frac{a^3-3a+\left(a^2-1\right)\sqrt{a^2-4}-2}{a^3-3a+\left(a^2-1\right)\sqrt{a^2-4}+2}\sqrt{-2-a}\)
Cho \(P=\left(\dfrac{a-3\sqrt{a}+2}{3a-7\sqrt{a}+2}-\dfrac{\sqrt{a}-3}{3a-8\sqrt{a}-3}+\dfrac{8\sqrt{a}}{9a-1}\right):\left(1-\dfrac{2\sqrt{a}-a+1}{3\sqrt{a}+1}\right)\)
Tìm giá trị nguyên lớn nhất của a để \(P>\dfrac{3}{\left|1-3\sqrt{5}\right|}\)
1. Cho biểu thức: A=\(\left[\dfrac{a+3\sqrt{a}+2}{\left(\sqrt{a}+2\right)\left(\sqrt{a}-1\right)}-\dfrac{a+\sqrt{a}}{a-1}\right]:\left(\dfrac{1}{\sqrt{a}+1}+\dfrac{1}{\sqrt{a}-1}\right)\)
Rút gọn biểu thức trên
A=\(\left(\dfrac{a+4\sqrt{a}+4}{a+2\sqrt{a}}-\dfrac{\sqrt{a}}{\sqrt{a}-2}\right):\left(\dfrac{\sqrt{a}-4}{a-2\sqrt{a}}-\dfrac{3\sqrt{a}+6}{4-a}\right)\)
Rút gọn biểu thức trên
cho biểu thức x=\(\left(\dfrac{1}{\sqrt{a}-3}+\dfrac{1}{\sqrt{a}+3}\right)\left(1-\dfrac{3}{\sqrt{a}}\right)\)
a.rút gọn biểu thức
b.xác định a để biểu thức A>\(\dfrac{1}{2}\)
Rút gọn biểu thức: \(A=\left(\dfrac{4x+4}{2\sqrt{2x^3}-8}-\dfrac{\sqrt{2x}}{2x+2\sqrt{2x}+4}\right)\left(\dfrac{1+2\sqrt{2x^3}}{1+\sqrt{2x}}\right)\)
Bài 1: CHo biểu thức P = \(\left(\dfrac{1}{\sqrt{a}-1}-\dfrac{1}{\sqrt{a}}\right):\left(\dfrac{\sqrt{a}+1}{\sqrt{a}-2}+\dfrac{\sqrt{a}+2}{\sqrt{a}-1}\right)\)
a) Rút gọn P
b) Tìm a để P dương
BÀi 2: Cho biểu thức A = \(\left(\sqrt{x}-3+\dfrac{4}{\sqrt{x}+1}\right)\left(\sqrt{x}-\dfrac{2\sqrt{x}}{\sqrt{x}+1}\right)\)
a) Rút gọn A
b) Tìm giá trị của x để A >1