Với a>=2, rút gọn:
M=\(\dfrac{a^3-3a+\left(a^2-1\right)\sqrt{a^2-4}-2}{a^3-3a+\left(a^2-1\right)\sqrt{a^2-4}+2}\)
Đơn giản biểu thức: \(A=\dfrac{a^3-3a+\left(a^2-1\right)\sqrt{a^2-4}-2}{a^3-3a+\left(a^2-1\right)\sqrt{a^2-4}+2}\)
Đơn giản biểu thức: \(A=\dfrac{a^3-3a+\left(a^2-1\right)\sqrt{a^2-4}-2}{a^3-3a+\left(a^2-1\right)\sqrt{a^2-4}+2}\)
Rút gọn
\(A=\sqrt{27.48\left(1-a^2\right)}vớia>1\)
\(B=\frac{1}{a-b}.\sqrt{a^4.\left(a-b\right)^2}\)Với a>b
\(C=\sqrt{5a}.\sqrt{45a}-3a\)với a> hoặc bằng 0
\(D=\left(3-a\right)^2-\sqrt{0,2}.\sqrt{180a^2}\)Với a tùy ý
Cho \(P=\left(\dfrac{a-3\sqrt{a}+2}{3a-7\sqrt{a}+2}-\dfrac{\sqrt{a}-3}{3a-8\sqrt{a}-3}+\dfrac{8\sqrt{a}}{9a-1}\right):\left(1-\dfrac{2\sqrt{a}-a+1}{3\sqrt{a}+1}\right)\)
Tìm giá trị nguyên lớn nhất của a để \(P>\dfrac{3}{\left|1-3\sqrt{5}\right|}\)
Rút gọn A = \(\left(\frac{x+2\sqrt{x}+4}{x\sqrt{x}-8}+\frac{x+2\sqrt{x}+1}{x-1}\right) :\left(3+\frac{1}{\sqrt{x}-2}+\frac{2}{\sqrt{x}+1}\right)\)
a, Rút gọn A b , Tìm x thỏa mãn A > 1 c,Tính A với \(x=\frac{\sqrt{4+\sqrt{3}}+\sqrt{4-\sqrt{3}}}{\sqrt{4+\sqrt{13}}}+\sqrt{27-10\sqrt{2}}\)\(A=\frac{\sqrt{x}+1}{3\left(\sqrt{x}-1\right)}\)
A=\(\left(\dfrac{a+4\sqrt{a}+4}{a+2\sqrt{a}}-\dfrac{\sqrt{a}}{\sqrt{a}-2}\right):\left(\dfrac{\sqrt{a}-4}{a-2\sqrt{a}}-\dfrac{3\sqrt{a}+6}{4-a}\right)\)
Rút gọn biểu thức trên
3/ rút gọn biểu thức
A=\(\left(\sqrt{a}+2\right)\left(\sqrt{a}-3\right)-\left(\sqrt{a}+1\right)^2+\sqrt{9a}\)
1. Cho biểu thức: A=\(\left[\dfrac{a+3\sqrt{a}+2}{\left(\sqrt{a}+2\right)\left(\sqrt{a}-1\right)}-\dfrac{a+\sqrt{a}}{a-1}\right]:\left(\dfrac{1}{\sqrt{a}+1}+\dfrac{1}{\sqrt{a}-1}\right)\)
Rút gọn biểu thức trên