Cho hàm số y = - 1 3 x 3 + a - 1 x 2 + a + 3 x - 4
Tính diện tích hình phẳng giới hạn bởi (C) và các đường thẳng y=0;x=-1;x=1
Diện tích của hình phẳng được giới hạn bởi các đường: y = tanx; y = 0; x = -π/4 và x = π/4 bằng:
A. π; B. -π;
C. ln2; D. 0
Diện tích của hình phẳng được giới hạn bởi các đường: y = tanx; y = 0; x = - π /4 và x = π /4 bằng:
A. π ; B. - π ;
C. ln2; D. 0
Cho hàm số y = a x 4 + b x 2 + c có đồ thị (C) biết rằng (C) đi qua điểm A(-1;0) tiếp tuyến d tại A của (C) cắt (C) tại hai điểm có hoành độ lần lượt là 0 và 2, diện tích hình phẳng giới hạn bởi d, đồ thị (C) và hai đường thẳng x=0; x=2 có diện tích bằng 28/5 (phần gạch chéo trong hình vẽ). Diện tích hình phẳng giới hạn bởi d, đồ thị (C) và hai đường thẳng x=-1; x = 0 có diện tích bằng:
A. 2/5
B. 1/9
C. 2/9
D. 1/5
Diện tích hình phẳng giới hạn bởi các đường thẳng y = 1, y = x và đồ thị hàm số y = x 2 4 trong miền x ≥ 0 , y ≤ 1 là a/b. Khi đó b - a bằng
A. 4
B. 2
C. 3
D. 1
Diện tích hình phẳng P giới hạn bởi các đường: y 1 = x, y 2 = 2x, y 3 = 2 - x bằng:
A. 1 B. 2/3
C. 2 D. 1/3
Diện tích hình phẳng P giới hạn bởi các đường: y 1 = x, y 2 = 2x, y 3 = 2 - x bằng:
A. 1 B. 2/3
C. 2 D. 1/3
Thể tích khối tròn xoay tạo bởi phép quay quanh trục Ox của hình phẳng giới hạn bởi các đường: y = sin 2 / 3 x , y = 0 và x = π/2 bằng:
A. 1; B. 2/7;
C. 2π; D. 2π/3.
Diện tích hình phẳng giới hạn bởi các đường y = 1 + ln x x , y=0, x=1 và x=e là S = a 2 + b . Khi đó giá trị a 2 + b 2 là:
A. 2 3
B. 4 3
C. 20 9
D. 2