Đáp án B
Điểm E nằm trên tia phân giác góc A của tam giác ABC thì điểm E cách đều hai cạnh AB, AC
Đáp án B
Điểm E nằm trên tia phân giác góc A của tam giác ABC thì điểm E cách đều hai cạnh AB, AC
Cho tam giác ABC. Trên tia phân giác của góc B, lấy điểm O nằm trong tam giác ABC sao cho O cách đều hai cạnh AB, AC. Khẳng định nào sau đây sai?
(A) Điểm O nằm trên tia phân giác của góc A.
(B) Điểm O không nằm trên tia phân giác của góc C.
(C) Điểm O cách đều AB, BC.
(D) Điểm O cách đều AB, AC, BC.
Cho tam giác ABC có AC>AB, tia phân giác của các góc A cắt BC ở D ,điểm E nằm trên đoạn thẳng AD . CMR AC-AB>EC-EB
Cho tam giác ABC có AC> AB, tia phân giác góc A cắt BC ở D. Điểm E nằm trên đoạn thẳng AD. Chứng minh rằng AC-AB >EC-EB
cho tam giác ABC có E là giao điểm các tia phân giác góc ngoài B,C và D là giao điểm các tia phân giác góc B, C của tam giác ABC
a) C/m các điểm A, D, E cùng nằm trên một đường thẳng
B)Tính góc BDC+gócBEC
1. Cho góc xOy nhọn. Trên tia Ox lấy hai điểm A, B (điểm B nằm giữa hai điểm O Và A). Trên tia Oy lấy hai điểm C, D (điểm D nằm giữa hai điểm O và C) sao cho OA = OC và OB = OD
a) Chứng minh tam giác OAD = tam giác OCB
b) AD cắt BC tại M. Chứng minh tam giác CMB = tam giác AMB
c) Chứng minh rằng OM là tia phân giác của góc xOy
2. Cho tam giác ABC có AB = AC. Gọi M là trung điểm của BC
a) Chứng minh tam giác ABM = tam giác ACM
b) Chứng minh AM vuông góc với BC.
c) Trên cạnh BA lấy điểm E, trên cạnh CA lấy điểm F sao cho BE = CF. Chứng minh tam giác EBC = tam giác ECB
d) Chứng minh EF = BC
3. Cho đường thẳng a. Trên cùng một nửa mặt phẳng có bờ là dường thẳng a lấy hai điểm A và B. Từ A vẽ AH vuông góc với đường thẳng a (H thuộc a). Trên tia đối của tia HA lấy điểm C sao cho HC = HA. Từ B vẽ BK vuông góc với đường thẳng a (K thuộc a). Trên tia đối của tia KB lấy điểm D sao cho KB = KD. Đoạn thẳng AD cắt đường thẳng a tại E. Nối E với C và E với B
a) Chứng minh rằng: EA = EC và EB = ED
b) Chứng minh rằng: C, E, B thẳng hàng
c) Gọi M là trung điểm của đoạn thẳng AB, N là trung điểm của đoạn thẳng CD. Chứng minh rằng EM = EN
4. Cho tam giác ABC. D, E lần lượt là trung điểm của đoạn thẳng AB, AC. Trên tia đối của tia DC lấy điểm M sao cho DM = DC. Trên tia đối cuả tia EB lấy điểm N sao cho EN = EB. Chứng minh rằng
a) Tam giác DBC = tam giác DAM
b) AM//BC
c) M, A, N thẳng hàng
Cho tam giác ABC cân tại A, điểm M nằm trog tam giác sao cho MB< MC. Chứng minh rằng: Góc AMB> góc AMC.
cho tam giác ABC có AC>AB tia phân giác của A cắt BC tại D . Điểm E nằm trên AD. CMR AC-AB>EC-EB
Bài 1: Cho tam giác ABC, góc B bằng 60 độ, phân giác BD. Từ A kẻ Ax//BC cắt tia BD tại E
a) CM tam giác ABE cân
b) Tính góc BAE
Bài 2: Cho góc xOy khác góc bẹt có Ot là tia phân giác. Quan điểm H thuộc tia Ot kẻ đường thẳng vuông góc với Ot nó cắt Ox, Oy tại A và B
a) CM OA=OB
b) Lấy điểm C nằm giữa O và H, AC cắt Oy ở D. Trên tia Ox lấy điểm E sao cho OE=OD. CM 3 điểm B,C,E thẳng hàng
Bài 3: Cho tam giác ABC, trên cạnh BC lấy điểm D và E (D nằm giữa B và E) sao cho BD=CE. Qua D và E vẽ DF và EH song song với AB (F, H thuộc AC). CM AB=DF+EH
cho tam giác ABC có A=120 độ . Trên tia phân giác của góc A lấy hai điểm D và E ( D nằm giữa A và E ) sao cho AB = AD , DE=AC . Chứng minh rằng tam giác BCE là tam giác đều
Cho tam giác ABC vuông tại E, tia phân giác của góc B cắt cạnh AC tại D .trên cạnh BC lấy điểm E sao cho BE= BA .
a)Chứng minh tam giác ABD bằng tam giác EBD
b) trên tia đối của tia AB lấy điểm F sao cho AF = AC .Chứng minh DF = DC
c)Chứng minh ba điểm E ,D ,F cùng nằm trên một đường thẳng
Điểm E nằm trên tia phân giác góc A của tam giác ABC ta có
A. E nằm trên tia phân giác góc B
B. E cách đều hai cạnh AB, AC
C. E nằm trên tia phân giác góc C
D. EB = EC