ĐKXĐ : x ≥ 1
<=> \(x^2\left(x-1\right)-x\sqrt{x-1}-2=0\)
Đặt \(x\sqrt{x-1}=t\)( t ≥ 0 )
pt <=> t2 - t - 2 = 0
<=> ( t + 1 )( t - 2 ) = 0
<=> t = -1 (ktm) hoặc t = 2 (tm)
=> \(x\sqrt{x-1}=2\)
<=> x2( x - 1 ) = 4 ( bình phương hai vế )
<=> x3 - x2 - 4 = 0
<=> x3 - 2x2 + x2 - 4 = 0
<=> x2( x - 2 ) + ( x - 2 )( x + 2 ) = 0
<=> ( x - 2 )( x2 + x + 2 ) = 0
<=> x - 2 = 0 hoặc x2 + x + 2 = 0
+) x - 2 = 0 <=> x = 2 (tm)
+) x2 + x + 2 = 0
Δ = b2 - 4ac = 1 - 8 = -7
Δ < 0 => vô nghiệm
Vậy pt có nghiệm x = 2