Lời giải:
Để cho đẹp, đổi \((xy,yz,xz)\mapsto (a,b,c)\) suy ra \(a+b+c=1\)
BĐT cần chứng minh tương đương với :
\(A=\frac{1}{a+b+c+a+\frac{bc}{a}}+\frac{1}{a+b+c+b+\frac{ac}{b}}+\frac{1}{a+b+c+c+\frac{ab}{c}}\leq \frac{9}{5}\)
\(\Leftrightarrow A=\frac{a}{2a^2+ab+bc+ac}+\frac{b}{2b^2+ab+bc+ac}+\frac{c}{2c^2+ab+bc+ac}\leq \frac{9}{5}\)
\(\Leftrightarrow A=\sum \frac{a(ab+bc+ca)}{2a^2+ab+bc+ac}\leq \frac{9(ab+bc+ac)}{5}\)
Để ý rằng \(A=\sum \left ( a-\frac{2a^3}{2a^2+ab+bc+ac} \right )=1-\sum \frac{2a^3}{2a^2+ab+bc+ac}\)
Cauchy-Schwarz:
\(\sum \frac{2a^3}{2a^2+ab+bc+ac}=\sum \frac{2a^4}{2a^3+a^2b+abc+a^2c}\geq \frac{2(a^2+b^2+c^2)^2}{2(a^3+b^3+c^3)+ab(a+b)+bc(b+c)+ca(a+c)+3abc}\)
Giờ đặt \(ab+bc+ac=q,abc=r\)
Phân tích:
\(2(a^3+b^3+c^3)+\sum ab(a+b)+3abc=2(a^3+b^3+c^3-3abc)+(a+b+c)(ab+bc+ac)+6abc\)
\(=2(a+b+c)(a^2+b^2+c^2-ab-bc-ac)+ab+bc+ac+6abc\)
\(=2(a^2+b^2+c^2)-(ab+bc+ac)+6abc=2-5q+6r\)
Do đó \(A\leq 1-\frac{2(1-2q)^2}{2-5q+6r}\). Giờ chỉ cần chỉ ra \(1-\frac{2(1-2q)^2}{2-5q+6r}\leq \frac{9q}{5}\Leftrightarrow q(3-5q)+6r(9q-5)\geq 0\)
Theo AM-GM dễ thấy
\(q^2=(ab+bc+ac)^2\geq 3abc(a+b+c)=3r\)
Và \(1=(a+b+c)^2\geq 3(ab+bc+ac)\Rightarrow q\leq \frac{1}{3}\)
\(\Rightarrow 9q-5<0\rightarrow 6r(9q-5)\geq 2q^2(9q-5)\) (đổi dấu)
\(\Rightarrow q(3-5q)+6r(9q-5)\geq q(3-5q)+2q^2(9q-5)=q(2q-1)(3q-1)\geq 0\)
BĐT trên hiển nhiên đúng vì \(q\leq \frac{1}{3}<\frac{1}{2}\Rightarrow (2q-1)(3q-1)\geq 0\)
Chứng minh hoàn tất.
Dấu bằng xảy ra khi \(a=b=c=\frac{1}{3}\Leftrightarrow x=y=z=\frac{1}{\sqrt{3}}\)
P/s: Làm BĐT bần cùng lắm mới xài pqr, không ngờ phải xài thật :)
Sao tag éo dc :|