a, \(\left(3x-x\right)^2\left(3x+1\right)\left(3x+1\right)=29\)
<=> \(4x^2\left(3x+1\right)^2=29\)
<=> \(4x^2;\left(3x+1\right)^2\inƯ\left(29\right)=\left\{\pm1;\pm29\right\}\)
4x^2 | 1 | -1 | 29 | -29 |
(3x+1)^2 | 29 | -29 | 1 | -1 |
x | 1/2 | ktm | \(\sqrt{\frac{29}{4}}\) | ktm |
x | \(\frac{\sqrt{29}-1}{3}\) | ktm | 0 | ktm |
b, Tương tự
b) ( 4x - 1 ) + ( 9 - 4x )( 3 + 4x ) = -8
<=> ( 4x - 1 ) + ( 27 + 24x - 16x2 ) = -8
<=> 4x - 1 + 27 + 24x - 16x2 = -8
<=> -16x2 + 28x + 26 = -8
<=> -16x2 + 28x + 26 + 8 = 0
<=> -16x2 + 28x + 34 = 0
<=> -2( 8x2 - 14x - 17 ) = 0
=> 8x2 - 14x - 17 = 0
\(\Delta'=b'^2-ac=\left(\frac{b}{2}\right)^2-ac=\left(\frac{-14}{2}\right)^2-\left(-17\right)\cdot8=185\)
\(\Delta'>0\)nên phương trình đã cho có hai nghiệm phân biệt :
\(x_1=\frac{-b'+\sqrt{\Delta'}}{a}=\frac{-\left(-7\right)+\sqrt{185}}{8}=\frac{7+\sqrt{185}}{8}\)
\(x_2=\frac{-b'-\sqrt{\Delta'}}{a}=\frac{-\left(-7\right)-\sqrt{185}}{8}=\frac{7-\sqrt{185}}{8}\)
Lớp 7 mà nghiệm xấu nhỉ ?